
AD-AIIB 791 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/0 W/2
VERSION OF THE GRAPHICS-ORIENTED INTERACTIVE FINITE ELEENT T-ETC(U)

UNCLASIFIED L

NAVAL POSTGRADUATE SCHOOL
fMonterey, California

THESIS
A VERSION OF THE GRAPHICS-ORIENTED

INTERACTIVE FINITE ELEMENT TIME-SHARING
SYSTEM (GIFTS) FOR AN IBM WITH CP/CMS

by DTIC
Ronnie Hundley ELECY r-

JUL 1)31982 "1i
March 1982:1 E

C Thesis Advisor: G. Cantin

CApproved for public release; distribution unlimited.

LLJ

S2 01 12 O

SCCuRIYV CLASGIFIC&TION OP TWIS PAGE ea'W OSa Raeeee__________________

REPORT DOCUMENTATION PAGE N,,D8 IsT(TroNas
,, REPORT IdUlo a. T ACRCE3SSO N ECiPi T'S CATALOG MUPI, 14

4. TITLEK (ald ShIfes) S. TYPIE or REPORT 6 PERIOO COVEREO

A Version of the Graphics-oriented Inter- Master's & Engineer's
active Finite Element Time-sharing System Thesis - March 1982
(GIFTS) for an IBM with CP/CMS 6. penromm.oOn. REPoRT MUlmiR

1. AUTHOIee) 0. CONTRACT OR GRANT 11,6'.1CWs)

Ronnie Hundley
i9I. ogInorenolo Of nIZATIOo NAMI &i AN)O ! 000 So. PROGlAU ELEMENT. PWOJECT TASK

TARA 6 WORK UNIT -NUwiI s.

Naval Postgraduate School
Monterey, California 93940

I1. CONTROLLING OrfiCE NAME AND LOD11EM i2. REPORT DATE

Naval Postgraduate School March 1982
Monterey, California 93940 96.UNER orPGES96

14. MONITORING AGENCY NAMEI 6 AOO116560 dWffsme IM C.emU0Ii Offse) IS. SECURITY CLASS. (of he m

Unclassified
ISO. OECLASSIPICATION/IOWNGRAOING

ICHCOULE

14. OSTRISUTION STATEMENT (of th, Re at)

Approved for public release; distribution unlimited.

17. DISTnISUTION STATEMENT eth e ees n Mes e Eee* 20. if OfMtmet 1 NOWN)

14. SUPPLEMENTARY MOTES

It. Key WOROS (CRIMSI eMM 0 IneWW. ais of afee p fdom tItA b Mes ")

G I FTS
Finite Element Structural Analysis
Computer Graphics
Tektronix
IBM Computeri 320. ABSTRACT (Canthum - feww" 019O 000400 001 ue...ss0in D dinuf 5W M memisi)

'A version of the Graphics-oriented, Interactive, Finite
element, Time-sharing System (GIFTS) has been developed for,
and installed on, an IBM computer with the Conversational
Monitor System (CMS). GIFTS, developed at, and available
from the Interactive Graphics Engineering Laboratory of the
University of Arizona, is an extensive code for static, tran-
sient, modal, and constrained substructural analysis of three-.-,

00 1473 ESWION oP I O s O oIfo?
S/R - I I3~i YY CI. II CA I@IU OF TeNS PAGE (k m O. Neie)

1

INIGUm'i CA i O V ?NO* *. f, N... Be".

-dimensional truss, plate, shell, and solid finite element
models. A brief description of GIFTS, including insights
into its logic and structure necessary to the version's
development, and an in-depth description of the method used
to invoke CMS commands from the executing program for the
purpose of data base management are provided. The version,
making use of the Tektronix 4000 series graphics terminals,
is self-contained and portable, allowing its installation
on other IBM computers with the CMS operating system

- or- _ ---- -- TIe

:1•

.1 Dis

DD Fori. 1473
/4 =,2-n14-6o1 MY. cg.aOPITev TWO$ 04Sg1.a Do R-0-1

Approved for public release; distribution unlimited.

A Version of the Graphics-oriented Interactive
Finite Element Time-sharing System (GIFTS)

for an IBM with CP/CMS

by

Ronnie Hundley
Lieutenant, United States Navy

B.S., University of Washington, 1974

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

and

MECHANICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
March 1982

Author: _____

- Approved by: "_
Tesis AdJvi7 so r

,; ~ ~ ~ \Se - - cond Reae

airman,-ep rt ent o MegalE

ean of cence an Engineering

3

ABSTRACT

A version of'Zhe Graphics-oriented, Interactive, Finite

element, Time-sharing System (GIFTS) has been developed for,

and installed on, an IBM computer with the Conversational

Monitor System (CMS). GIFTS, developed at, and available

from the Interactive Graphics Engineering Laboratory of the

University of Arizona, is an extensive code for static, tran-

sient, modal, and constrained substructural analysis of three

dimensional truss, plate, shell, and solid finite element

models. A brief description of GIFTS, including insights

into its logic and structure necessary to the version's

development, and an in-depth description of the method used

to invoke CMS commands from the executing program for the

purpose of data base management are provided. The version,

making use of the Tektronix 4000 series graphics terminals,

is self-contained and portable, allowing its installation

on other IBM computers with the CIVS operating system.

4

L

TABLE OF CONTENTS

I. INTRODUCTION -- 8

II. A BRIEF DESCRIPTION OF GIFTS ------------------------ 10

A. THE MODULES --------------------------------------11

B. THE LIBRARIES ------------------------------------11

I. The Graphics Package ------------------------- 12

2. The Character Manipulation Package ----------- 12

3. The Data Base Management Package ------------- 12

III. IBM IMPLEMENTATION ---------------------------------- 13

A. THE SYSTEM --------------------------------------- 13

1. The Control Program (CP) ---------------------14

2. The Conversational Monitor System (CMS) ------ 14

a. Invoking CMS Commands from an
Executing Program ------------------------ 14

b. The CMS File Identifier ------------------ 15

B. THE IBM (CP/CMS) GRAPHICS PACKAGE ---------------- 16

1. ASCII/EBCDIC Translation --------------------- 16

2. Flushing the Graphics Buffer to the Terminal-18

C. THE IBM (CP/CMS) CHARACTER MANIPULATION PACKAGE--20

D. THE IBM (CP/CMS) DATA BASE MANAGEMENT PACKAGE ---- 21

1. The IBM (CP/CMS) Data Base ------------------- 21

a. The Direct (Random) Access Files --------- 22

b. Sequential Data Base Files --------------- 23

c. Special Sequential Data Base Files -------24

j 5

2. Defining the Direct Access Files and GIFTS

Module IBMUDB -------------------------------- 26

3. Opening of the Data Base Files --------------- 31

4. Closing Files -------------------------------- 34

S. Deleting Files ------------------------------- 36

6. Renaming Files ------------------------------- 37

7. Checking for a File's Presence --------------- 39

E. THE ADDED ASSEMBLY ROUTINES (LIBRSA) ------------- 40

F. IBM (CP/CMS) INSTALLATION INSTRUCTIONS ----------- 40

G. IBM (CP/CMS) USER INSTRUCTIONS ------------------- 42

IV. SUMMARY AND RECOMMENDATIONS ------------------------- 43

APPENDIX A: DESCRIPTION OF GIFTS MODULES ----------------- 44

APPENDIX B: SUMMARY OF CMS COMMANDS USED----------------- 49

APPENDIX C: THE UNIFIED DATA BASE FOR THE IBM------------ 51

APPENDIX D: LISTING OF NEW GIFTS PROGRAM MODULE IBMUDB ---55

APPENDIX E: THE IBM (CP/CMS) GRAPHICS PACKAGE
SUBROUTINES ---------------------------------- 58

APPENDIX F: THE IBM (CP/CMS) CHARACTER MNIPULATION
PACKAGE SUBROUTINES -------------------------- 62

APPENDIX G: THE IBM (CP/CMS) DATA BASE MANAGEMENT
PACKAGE SUBROUTINES -------------------------- 66

APPENDIX H: LISTING OF THE IBM (CP/CMS) ASSEMBLY
ROUTINES ------------------------------------- 70

APPENDIX I: SOME IBM INSTALLATION TOOLS ------------------ 88

APPENDIX J: GIFTS USER INSTRUCTIONS FOR THE IBM (CP/CMS)
VERSION -------------------------------------- 92

LIST OF REFERENCES -- 95

INITIAL DISTRIBUTION LIST --------------------------------- 96

6

ACKNOWLEDGEMENT

I extend to Professor Gilles Cantin my most sincere thanks

for guiding me through this growing process, and for placing

me upon the threshold of the rapidly expanding opportunities

of computer aided design.

To my wonderfully understanding wife, Kathy, and my ever

changing children, Noel, Rhonda, and Maria, I extend my love

and devotion and promises of compensation for the sacrifices

made by them during my studies.

7

I. INTRODUCTION

The purpose of this thesis is to describe the development

of an IBM (CP/CMS)I version of the Graphics-oriented Inter-

active Finite Element Time-sharing System (GIFTS). GIFTS,

developed at, and available from the University of Arizona,

is a set of computer programs designed to perform static and

dynamic structural finite element analysis, making extensive

use of interactive computer graphics which allows the user to

ensure correct structural modeling and to view the results of

the analysis in a manner most understandable to him.

Versions of GIFTS have been developed for several differ-

ent computers but not for the IBM, and in particular, for an

IBM with CP/CMS. At the Naval Postgraduate School it was

desired to provide GIFTS as an instructional tool to the

students on a system for which they enjoy ready access and

were familiar. This system is the school's main frame, an

IBM 3033 with CP/CMS. It was to meet this need that the

development was undertaken. A self-contained IBM (CP/CMS)

version of GIFTS for an IBM with CP/CMS was developed in such

a way as to allow easy implementation on other IBM systems

with CP/CMS.

1 International Business Machine with the Command Program
and Conversational Monitor System.

8

It is not the intent of this thesis to provide a detailed

description of GIFTS, for this, the reader should consult the

GIFTS reference manuals [Refs. 1-4]. It is the intent to

provide information on those areas of GIFTS logic and struc-

ture that are necessary to the understanding of this version's

development and to provide some guidance in the implementation

and use of the GIFTS IBM (CP/CMS) version.

'-I'

II. A BRIEF DESCRIPTION OF GIFTS

GIFTS, developed by Professor Hussein A. Kamel and Mr.

Michael W. McCabe of the University of Arizona, is an inter-

active finite element analysis system designed to provide

the user with a unified approach to model generation, model

display (tabular or graphical), analysis and result display,

with a minimum of input by the user. It may be used as a

self-contained system, or as a pre- and post-processor for

other systems. It is operational on many systems, includ-

ing mini-computers with cores having as few as 32,000 words

of addressable memory (on mini-computers, the program modules

must be overlayed).

GIFTS consists of over 100,000 lines of FORTRAN source

code divided among 25 individually executable program modules.

The modules, being run independently of each other, communi-

cate by means of an automatically managed, disk resident

data base, known as the Unified Data Base (UDB). To perform

a complete finite element analysis with GIFTS, the user exe-

cutes a GIFTS procedure, using a number of modules in a

specified order depending on the type of analysis being

performed. GIFTS has procedures for static, transient,

modal, and constrained substructural analysis of three

2
Interfaces for pre- and post-processing are available

for ANSYS, SAP4, and NASTRAN.

10

dimensional truss, plate, shell, and solid finite element

models. The program modules use interactive computer graphics

extensively for viewing the results of model generation and

problem solution. GIFTS can also provide the user with the

information in tabular form.

A. THE MODULES

The GIFTS program modules vary in size from a few hundred

lines to over 12,000 lines of machine independent code. They

can be grouped according to their intended use. These group-

ings are:

1) the model generation and editing modules,

2) the load and boundary condition generation, dis-
play and editing modules,

3) the general purpose computational and result
display modules,

4) the natural vibration analysis modules,

5) the transient analysis modules, and

6) the constrained substructuring modules.

A brief description of the program modules can be found in

Appendix A.

B. THE LIBRARIES

Commonly used subroutines and functions are grouped into

a user library called the GIFTS library. For convenience,

the GIFTS library is subdivided into five groups called

LIBRI, LIBR2, LIBR3, LIBR4, and LIBR5. Of these groups,

only LIBRS contains machine dependent subroutines and

11

functions. LIBRS is composed of approximately 30 routines

containing machine dependencies that must be modified for

each computer system on which GIFTS is implemented. The

routines in LIBR5 are grouped according to function. The

groups are the Graphics Package, the Character Manipulation

Package, and the Data Base Management Package. It was through

the modification of, and addition to, these packages that the

IBM (CP/CMS) version was developed.

1. The Graphics Package

This is a set of subroutines containing all the neces-

sary software to drive a Tektronix 4000 series graphics ter-

minal. If a different terminal is desired for the graphics

output, these subroutines are the ones to be modified.

2. The Character Manipulation Package

These subroutines are used to pack, unpack, compare,

and change the format of characters and character strings.

They conduct interactive I/O with the user and make Operating

System calls for the date, time of day, and CPU time used.

3. The Data Base Mianagement Package

This package of routines performs data base manage-

ment by invoking primitive file handling functions, such as

opening, closing, defining, extending, renaming, printing,

and deleting UDB files. It additionally performs all I/O

operations with the direct access UDB files.

12

III. IBM IMPLEMENTATION

Three requirements were established for this IBM (CP/CMS)

version development of GIFTS. They were: to maintain the

logic of the machine independent routines 3 (that is, not to

alter them); to continue the use of the Tektronix 4000 series

terminals for graphics; and to provide a self-contained pack-

age of routines that would allow installation on other IBM

systems with little or no alteration. The only requirement

not met was the first, to maintain the logic of the machine

independent routines, but it was only necessary to modify

subroutine FRESLT4 in LIBRI. This alteration and the accom-

plishment of the other requirements are discussed below.

A. THE SYSTEM

The IBM (CP/CMS) version was developed on an IBM 3033

with the Virtual Machine Facility/370 (VM/370) System. It

should be noted that VM is not the operating system but

rather the virtual machine 'manager'.

The VM/370 system supervises four components: the con-

trol program (CP), the conversational monitor system (CMS),

the remote spooling communications subsystem (RSCS), and

3The GIFTS' program modules, LIBRI, LIBR2, LIBR3, and
LIBR4.

4See the Section on the Opening of Files in this Chapter.

13

the interactive problem control system (IPCS). Only two of

these components, CP and CMS, were necessary for the imple-

mentation of GIFTS. More detailed information on CP/CMS can

be obtained from References [5] through [8].

1. The Control Program (CP)

CP allocates to the virtual machine of each user the

resources necessary for proper interface between the virtual

machine, with associated virtual input/output (I/O) devices,

and the real computer with associated real I/O devices. It

additionally allows communication between virtual machines,

2. The Conversational Monitor System (CMS)

CMS is the operating system of the virtual machine

and as such has commands for editing, compiling, loading

(linking), and executing programs. It also has commands for

file manipulation that can be invoked from the CMS environ-
5

ment, an 'EXEC' file , or from an executing program. It is

through the use of these file manipulation commands, invoked

from GIFTS during execution, that the development of this

version was made possible. A brief description of the CMS

commands used in the IBM (CP/CMS) version can be found in

Appendix B.

a. Invoking CMS Commands from an Executing Program

In order to invoke a CMS command from an execut-

ing program it was necessary to provide an assembly language

5This is the same as a command file in other operating
systems.

14

program that would execute CMS commands passed to it from the

executing program. To this end, the assembly program FRTCMX

was developed. A listing of FRTCMX can be found in the list-

ing of LIBRSA in Appendix H. FRTCMX executes the CMS commands

in the CMS environment, and then returns control to the call-

ing FORTRAN program. As an example, the FORTRAN statement:

CALL FRTGMX (IERR,'IERASE ','PIPJOINT','PTS ')

would delete the file 'PIPJOINT PTS A' from the user's disk

space. The argument IERR contains the CMS return code (error

code) that could be checked to ensure the command execution

was successful. More detailed documentation on the use of

FRTCMX can be found in its listing.

b. The CMS File Identifier

CMS also controls the file identifier. A file

created under CMS has an identifier composed of three parts:

a file name (maximum of 8 characters), a file type (maximum

of 8 characters), and a file mode (2 characters). As an

example, in the file identifier:

PIPJOINT PTS Al.

PIPJOINT is the file name, PTS is the file type, and Al

(indicating the file is on the user's 'A' disk) is the file

mode. CMS does not allow more than one version of a file to

exist on a disk space. That is to say, two files on the same

1s

disk space cannot have the same name and file type, which

6proved to be of some importance in this version's development.

B. THE IBM (CP/CMS) GRAPHICS PACKAGE

As stated earlier, a goal of this verion's development

was to continue the use of the Tektronix 4000 series terminals.

for graphics. To this end, the GIFTS graphics package sup-

plied by the University of Arizona was used and required only

minor modifications. In addition to these modifications, it

was necessary to add four assembly routines to provide for

ASCII to EBCDIC conversion and non-interfering I/O operations

between the graphics package and the terminal. This section

is intended to cover the need for the modifications and the

added subroutines. A description of all the graphics package's

subroutines can be found in Appendix E, and a listing of the

assembly routines can be found in Appendix H.

1. ASCII/EBCDIC Translation

The IBM system uses the EBCDIC character set while

the Tektronix terminals use ASCII. To allow communication

between the computer and an ASCII terminal, an IBM ASCII

interface is provided, within the system, that automatically

executes the conversion between ASCII and EBCDIC characters.

All I/O operations directed to an ASCII terminal must pass

through this interface.

6See Section D of this Chapter on Data Base Management.

16

All output to the terminal from the graphics package

is broken up into single characters and placed into an output

array named LCHOUT, which is dimensioned 80. These graphics

package output characters can be divided into three groups:

the graphics characters that are interpreted by the terminal,

when in graphics mode, as being coordinates to which the

terminal's cursor is to be moved and/or to which a vector is

to be drawn; the control characters that place the terminal

in alphanumeric mode, graphics mode, erases the screen, rings

the bell, etc.; and the text that is to accompany a given plot.

In the GIFTS' graphics package, as with all similar

packages, the graphics characters, that is, those characters

that provide screen coordinates to the terminal, are computed

in ASCII Decimal Equivalent (ADE) integers. These ADE inte-

gers, relating directly to ASCII characters, after being cal-

culated, are placed into array LCHOUT for output. If LCHOUT,

containing these ADE integers, were output to the terminal,

the computer system's ASCII interface would interpret them

as being EBCDIC, resulting in improper conversion to ASCII

and output to the terminal. Because of this, it is necessary

to convert the ADE integers contained in LCHOUT to EBCDIC

characters before output to the terminal. This translation,

an well as the output to the terminal, is accomplished by

the assembly routine WRTADE. WRTADE converts the array of

ADE characters to EBCDIC and sends them to the terminal with-

out a carriage return being added to the end of the output

17

array. For the case where input from the terminal is required

by the graphics package, the opposite logic applies. Routine

RDADE reads the characters from the terminal, converts them

from EBCDIC to ASCII and places them into a desired array for

use by the graphics package. More detailed documentation on

WRTADE and RDADE can be found in the listing of LIBRSA in

Appendix H. Since the graphics characters are calculated in

ADE integers and placed into the output array in that form,

it is necessary that all other characters placed into the

array also be ADE integers. For the control characters, this

presents no difficulties since they are already defined in

the graphics package in ADE form. The text to accompany the

plot, however, is passed to the graphics package as EBCDIC

characters in A4 format (up to 4 characters per word). Before

the text can be placed into the output array, it must first be

broken up into individual characters and converted to ADE

integers. This is accomplished by assembly routine TOADE.

Additionally, in subroutine CURSOR, following the use of

RDADE, it is necessary to translate a character from ADE to

EBCDIC for use outside the Graphics Package. The assembly

routine TOEBCD is used for this purpose. A listing of both

TOADE and TOEBCD can be found in Appendix H.

2. Flushing the Graphics Buffer to the Terminal

When the terminal is in the graphics mode, all char-

acters received are interpreted by the terminal as being

either control or graphics characters. If interline characters

18

are added to the end of the graphics output buffer when

'flushed' to the terminal, they may be interpreted as con-

trol characters causing the terminal's mode to be modified,

or as graphics characters causing unintended or random

vectors to be drawn. As indicated in the previous section,

subroutine WRTADE prevents a carriage return from being added

to the end of the output buffer, but the IBM system continues

to add two characters to the end of the buffer. The first is

the control character DC3, and the second the graphics char-

acter DEL. Since these characters are added to end of the

output buffer, it was necessary to ensure that when the char-

acters are received by the terminal, it would be in alpha-

numeric mode, thus preventing their interpretation as part

of the intended graphics package output. This was accomplished

by plading the ADE integer 31 (equivalent to the ASCII control

character US), which places the terminal into the alphanumeric

mode, into the output array, as the last character.

As a result of placing the terminal into alphanumeric

mode at the end of each buffer flush, it was necessary to

ensure that the set of graphics characters describing the

coordinates for a vector not be split between buffers. If

they are split, the desired results may not be obtained. A

coordinate description, in ADE form, can consist of up to

four characters, so in subroutine PLTCHR, which computes the

ADE integers for the desired coordinates, a check is made to

ensure that there is room in the output array for at least

19

four additional characters. If there is not, the array is

flushed, which causes the terminal to be left in alphanumeric

mode. After this flush, and before PLTCHR continues to cal-

culate the new coordinates, the control character GS (ADE 29),

which causes the terminal to switch to graphics mode, is

placed into the output array followed by the four control

characters that describe the graphic cursor's position prior

to the previous flush. It is necessary to provide these coor-

dinates because the first vector drawn after the control char-

a(ter GS is issued to the terminal, is invisible. PLTCHR then

continues and calculates the new coordinates and causes them

to be placed into the output array.

C. THE IBM (CP/CMS) CHARACTER MANIPULATION PACKAGE

The modifications necessary to the Character Manipulation

Package were not extensive in nature and were mainly related

to ensuring that the characters used in the many FORTRAN data

statements were in EBCDIC form. In addition to these modi-

fications, extensive use was made of five assembly routines

provided by the Interactive Graphics Engineering Laboratory

of the University of Arizona, for character manipulation.

The routines are DECODE, ENCODE, DECOD, BTD, and ENF. A

description of all the routines making up the IBM (CP/CMS)

Character Manipulation Package can be found in Appendix F

and a listing of the assembly routines can be found in

Appendix H.

20

Of importance in this package are the calls to system

routines for the date, time of day, and CPU time used. The

routine called for the date and tinm of day is DATIME (called

in subroutines DATEP and TIMEP) and for the CPU time used is

SETIME (called by subroutine INITIO of the Data Base Manage-

ment Package) and GETIME (called by subroutine SECOND). If

these routines are not available on other systems, appropriate

substitutions must be made.

D. THE IBM (CP/CMS) DATA BASE MANAGEMENT PACKAGE

Since the modules communicate with each other through the

UDB, it is of the utmost importance that it be correct and

managed properly. In addition, it is important that in the

management process, that the data base disk space be minimized.

This section covers the management of the UDB on the IBM with

CP/CMS. A description of all routines used in the IBM (CP/CMS)

Data Base Management Package can be found in Appendix G, and

a listing of the assembly routines can be found in Appendix H.

1. The IBM (CP/CMS) Data Base

The UDB for the IBM (CP/CMS) version is identical to

that of the other versions except for the addition of one

file, which will be covered in the SPECIAL SEQUENTIAL DATA

BASE FILE section below. The UDB consist of up to 48 random

access and 9 sequential files that are managed automatically

by GIFTS.

21

a. The Direct (Random) Access Files

The 48 unformatted direct access UDB files used

by the IBM (CP/CMS) version are identical to those used by

other versions. It is necessary at this time to introduce

some GIFTS terminology in regards to the UDB.

A 'logical record' is the smallest unique collec-

tion of data into which the data contained in a file may be

divided. As an example, all the data pertaining to one node

in the UDB file with the file type PTS make a 'logical record'.

The logical record size, in words, is determined by summing

the product of the number of 'integers' in the logical record

times the number of machine words per integer and the number

of 'reals' in the logical record times the number of machine

words per real number. Consider again the UDB file with the

file type of PTS. It has 10 integers and 17 real numbers per

logical record. For single precision, the IBM uses one word

for both integer and real numbers, and for double precision,

IBM uses one word for integer numbers and two words for real

numbers. The word size for a logical record in the PTS file

would therefore be 27 for single precision and 44 for double

precision.

A 'physical record' is the collection of data

that must be read from or written to a file with a single I/O

instruction. It may be made up of any integral number of

logical records. The number of logical records stored in a

physical record of a file is termed the file's 'blocking

22

factor'. The UDB file type PTS has a blocking factor of 10,

and thus a physical record word size of 270 words for single

precision and 440 words for double precision. When a phys-

ical record is read or written to file type PTS, information

on 10 nodes will be involved.

It is the physical record word size that is used

in the FORTRAN statement DEFINE FILE to define the random

access files. The physical record word size for all the UDB

file types can be found in Appendix C. Both single and double

precision sizes are included although GIFTS currently is only

single precision. It is anticipated that a double precision

version will be available in the near future.

The file name assigned to these random access UDB

files is the same as the job name provided to GIFTS by the

user during module execution. For example, if the user were

analyzing a pipe joint, he may provide GIFTS a job name

PIPJOINT (the job name, like the file name, is limited to 8

characters), in which case the UDB file type PTS would have

the file identifier 'PIPJOINT PTS A'.

b. Sequential Data Base Files

Of the nine sequential files in the UDB, only

five will be discussed here, with the remaining four discussed

under the heading of SPECIAL SEQUENTIAL DATA BASE FILES below.

These sequential UDB files do not require, as

with the direct access files, a specified file size. The

file types are CFR, DGT, DYN, H-ST, and SAV.

23

The file type CFR is used to store data involved

with contours used in module RESULT. File type DGT is used

to store digitizer information, while DYN stores information

relating to modal analysis, with HST containing information

for a histogram plot in transient analysis. File SAV is

used to save the stiffness matrix.

These files are automatically created by the

GIFTS modules and are given a file name equal to the GIFTS

job name.

c. Special Sequential Data Base Files

These files are placed in this cateogry because

they do not follow the naming convention of other UDB files

and are not necessarily created by the GIFTS modules.

The first of these special UDB files has the file

type SRC. An SRC file can be created with any file name, by

the user, via the text editor in the CMS environment and will

contain a list of GIFTS commands and their associated data.

The commands can be executed from an interactive module via

the command OLB (On Line Batch). When the OLB command is

executed GIFTS prompts the user for the file name of the SRC

file. After the file name is entered, the commands contained

in the file are read and executed by GIFTS. For more informa-

tion on the SRC file's use, consult the GIFTS User's Reference

Manual [Ref. 11.

The next special file has the identifier GIFTS5

INF and resides on the GIFTS system's disk space. This file

24

contains a listing of all GIFTS' commands with instructions

for their use. The file is accessed from interactive modules

via the command HELP. When the command is issued, GIFTS

prompts the user for the command for which he desires inform-

ation. After this is entered, GIFTS opens the file, locates

the desired information, and displays it at the terminal for

the user.

The last two special files are GIFTS5 EST and GIFTS5

ESX which generally reside on the user's disk space. GIFTS5 EST

contains information which is used by solution module OPTIM to

make solution time estimates for the solution modules STIFF,

DECOM, DEFL, and STRESS. These four modules perform updates

to the file during their execution. GIFTS logic is such that

during this updating procedure, it performs both read and

write operations to GIFTS5 EST. In other computer systems on

which GIFTS is operated, this is accomplished by opening one

GIFTS5 EST file for input and another for output, on the same

disk space. Since the IBM system does not allow two files to

exist on the same disk space with the same identifier, this

presented a problem. This problem was solved by opening file

GIFTS5 EST for input, but having output directed to GIFTS5

ESX. This is accomplished when GIFTS calls for the opening

of GIFTS5 EST for output. The subroutine that opens sequen-

tial files for output, changes the file type from EST to ESX.

When these modules complete their I/0 operations on these

files, and the files are closed, GIFTS5 EST, now being

25

superseded by GIFTS5 ESX, is deleted from the user's disk

space, so that the user will only have one of these files

present on his disk space. When the next GIFTS module is

executed, GIFTS5 ESX is renamed GIFTS5 EST, making it ready

for input. If the user executes one of the solution modules

without GIFTS5 EST or GIFTS5 ESX being present on his disk

space, GIFTS will use the GIFTS5 EST file on the GIFTS system's

disk space for input and will create GIFTS5 ESX on the user's

disk space during output.

2. Defining the Direct Access Files and GIFTS Module
.LBMUDB

Before unformatted direct access I/O operations can

occur, the direct access file must first be defined. This is

accomplished with the FORTRAN statement:

DEFINE FILE ISL (INR,ISR,U,IV),

where: ISL is the logical unit number assigned to the file,

INR is the maximum number of 'physical records'

that can be contained in the file,

ISR is the 'physical record' size in words,

U indicates that the records are to be written
and read without format control, and

IV is the record number associated variable (not
used in GIFTS but must be included in the
statement).

In all the versions of GIFTS that have been available,

the machine's FORTRAN allowed ISL, INR, and ISR to be integer

variables. The logics and structure of the GIFTS data base

26

management was based on this. This fact allowed the use of

one DEFINE FILE statement, located in subroutine DEFIN of

LIBR5, in these versions. The logical unit number (ISL), the

'physical record' size in words (ISR), and the number of

'physical records' required (INR), were simply passed as

arguments to this subroutine. When it became necessary to

increase the size of the file, that is increase the number

of records allowed in the file (INR), the file was closed via

a call to a system function or through the use of a FORTRAN

statement, and then the file would be redefined with the same

value for ISR and the increased value for INR. The logical

unit number (ISL) for the file could change as the file was

opened and closed.

This logic presented a problem for the IBM (CP/CMS)

version, since both the IBM FORTRAN G and FORTRAN H-extended,

available at the Naval Postgraduate School, do not allow ISL,

INR, and ISR to be integer variables. They must be integer

constants. Additionally, since there was no way to close a

7file during execution , once the DEFINE FILE statement was

made in an executing program, it could not be changed in

that program to allow for file growth.

It became clear that a DEFINE FILE statement would be

required for each direct access file. For this, logical unit

7The CMS command FINIS only closes a file in the CMS en-

vironment, not in the FORTRAN execution environment (IBCOM).

27

numbers 50 through 98 were used and the 'physical record' size,

in words, was calculated as described in the preceding section

on direct access files. This left only the number of 'physical

records' (INR) to be entered, and as the only undetermined

quantity, with its value dependent on the desire to conserve

disk space and to ensure that the user would not be unknowingly

constrained by a data base too small for a desired analysis.

Both of these seemingly opposite requirements were met through

the introduction of the new GIFTS module IBMUDB.

Before continuing with more information on program

IBMUDB, it is necessary to explain some facts about direct

access file creation on the IBM system and about some addi-

tional GIFTS' logic and structure.

Consider the FORTRAN statement:

DEFINE FILE 10 (100,27,U,IV).

It defines a direct access, unformatted file on logical unit

10. Each 'physical record' will be 27 words long and there

may be up to 100 'physical records' written to the file.

The statement itself does not cause the creation of this

file. It is only after the file is written into that this

occurs. If the file did not exist prior to program execu-

tion, and only 5 records are written to the file, the system

will write those S records, plus fill the remaining 95

records with zeros. The result is a great deal of wasted

disk space. However, if the file existed on the disk space

28

prior to the program execution containing this DEFINE FILE

statement, there could be a different result. As an example,

assume that the file in question was created by a previous

program execution containing the statement:

DEFINE FILE 10 (l,27,U,IV).

This is similar to the previous DEFINE FILE statement except

that only one record can be written (or read), as indicated

by a value of 1 for INR. When the program containing the

DEFINE FILE statement allowing 100 records is executed and

the file written into, only those records written will be

added to the file. As an example, if during the second pro-

gram's execution, the same five records are written to the

file, only those five records will be written to the disk,

not the 100 as before, thus saving disk space. It can be

seen that this method, if properly used, could result in the

conservation of disk space while allowng for file growth.

It is now necessary to discuss some important facts

about GIFTS and its data base management logic. Whenever

one of the GIFTS model generation modules 8 is first executed

for an analysis, it checks for the presence of the data base

files for the given job name, and if they are present, GIFTS

calls for the deletion of the old data base and the creation

of a new one. If the data base for an analysis was created

8Modules BULKM, BULKS, EDITM, and EDITS.

29

prior to the execution of one of these modules, for the pur-

pose of conserving disk space and allowing for file growth,

as described above, its intended purpose would be defeated

if it were deleted.

The new GIFTS module IBMUDB was developed to create

a 'dummy' data base for GIFTS and is executed prior to per-

forming an analysis on the IBM. In IBMUDB, each direct access

data base file is defined with its respective 'physical record'

size, in words, and with a maximum of one record. Then, in

the first word of that record, the integer -999 is written.

Thus, a data base file with -999 in the first word of the

first record is considered a 'dummy' data base file, and

through the modification of the Data Base Management Package

of LIBRS, GIFTS considers a 'dummy' file not to be present.

A listing of module IBMUDB can be found in Appendix D.

The DEFINE FILE statements executed in all modules,

except IBMUDB, are located in subroutine INITIO of the Data

Base Management Package of LIBRS. In these statements, each

direct access data base file is defined with its respective

logical unit number and 'physical record' size in words, and

with a maximum number of records of 1,000,000, which essen-

tially provides the user unlimited growth for the data base.

The actual data base size will only be limited by the user's

disk space available.

30

3. Opening of the Data Base Files

On the IBM system, a file is opened automatically when

an I/O operation 9 is performed, using the file's logical unit

number. If the logical unit number has not been associated

with a file identifier by the user, CMS automatically assigns

an identifier based on the logical unit number used. As an

example, if the sequential I/0 statement:

WRITE (29,100),

were executed without the association, CMS would assign the

identifier:

FILE FT29FOOl A,

which tells nothing about the file contents. In keeping with

the original structure of GIFTS, the opening of a file was con-

sidered to be the association of the proper file identifier

with its logical unit number.

In other versions of GIFTS, a maximum of thirteen files

(ten direct access and three sequential) were allowed to be

open at any given time. Generally, logical unit numbers 1

through 4 and 7 through 12 were used for the direct access

files while 13 through 15 were used for the sequential files.

The logical unit numbers were assigned by subroutine SLTASN

9
For direct access files the DEFINE FILE statement must

precede the I/0 operation. Additionally, if the operation
is for input, the file must already exist.

31

of the Data Base Management Package. When necessary, the

logical unit number would be released by the closing of the

file and then the freeing of the number by subroutine FRESLT

in LIBR1. This logic works provided that during the execution

of a program, a logical unit number could be used for more

than one direct access file identifier, which is not the case

for the IBM system with FORTRAN G or FORTRAN H-extended. On

the IBM, once a logical unit number is used for a given direct

access file, it cannot be associated with any other file.

Because of this, in the IBM (CP/CMS) version, each UDB file

is assigned its own logical unit number. Subroutine FRESLT,

which was in LIBR1 and thus considered a machine independent

routine, was moved to LIBRS and made a 'dummy' routine, that

is, it was changed to contain no executable FORTRAN statements.

Subroutine SLTASN was also made a 'dummy' routine. These two

routines were not deleted from GIFTS because they are called

by routines contained in the machine independent portions of

GIFTS and it was desired not to alter these. To compensate

for the void left by making SLTASN a 'dummy' routine, subrou-

tine MANAGE was added to the Data Base Management Package.

4 This routine relates a data base file type with its respec-

tive logical unit number. It will return the logical unit

number if provided with the file type or the file type if

provided with the logical unit number. MANAGE is called only

by routines contained in the Data Base Management Package. The

logical unit numbers for each of the data base files can be

found in Appendix C.

32

All the data base files are opened, that is the data

base file identifier is associated with its respective logical

unit number, by invoking the CMS command FILEDEF during program

execution,I0 when called for by GIFTS. For direct access files,

this is accomplished in subroutine DEFIN. Here the FILEDEF

command is issued and has the form:

FILEDEF ISLDEF DISK XJOB EXT8 A (XTENT 1000000 DSORG DA)

where: ISLDEF is a double word real variable containing
the logical unit number,

DISK indicates the file is to be disk resident,

XJOB is a double word real variable containing
the file name,

EXT8 is a double word real variable containing

the file type,

A is the file mode,

XTENT 1000000 is the maximum number of records
in the extent for the file, and,

DSORG DA indicates that the data set organization
is direct access.

For the sequential files, the statement:

FILEDEF ISLDEF DISK XJOB EXTS A

is generally used, with ISLDEF, DISK, XJOB, EXT8, and A

having the same meaning as for the direct access FILEDEF.

10This is accomplished via a call to assembly routine

FRTCMX discussed in Section A of this Chapter.

33

Three subroutines, OPENIF, OPENOF, and OPENLP are used

to open the sequential files. Subroutine OPENOF opens a file

for output and uses a FILEDEF statement identical to the one

above. Subroutine OPENIF is used to open a sequential file

for input. In this routine, if the file to be opened is either U
GIFTS5 EST or GIFTS5 INF,11 a check is made to determine if

the file exists on the user's disk, if it does not, the FILEDEF

for the file is made with the file mode set to C, where C in-

dicates that the file is to be read from the GIFTS system's

disk space to which the user is linked. Subroutine OPENLP

opens a sequential file, for output, that may be spooled to

the line printer by GIFTS. The FILEDEF used here is:

FILEDEF 20 DISK PRTNAM PRNTFILE A,

where: 20 is the logical unit number,

DISK indicates that the file is to be disk
resident,

PRTNAM is a double word real variable containing
the file name, provided by the user,

PRNTFILE is the file type, and,

A is the file mode.

4. Closing Files

Since the IBM FORTRAN G and FORTRAN H-extended do not

provide FORTRAN statements that allow a file to be closed

lSee section entitled Special Sequential Access Files in
this Chapter.

34

during execution, the IBM automatically closes all files opened

during execution when the execution is terminated. This, coupled

with the fact that GIFTS has not been limited as to the number

of files it may have opened during execution (see the previous

section), it may at first appear that there is no need to be

concerned about closing a file, which is in fact the case in

the FORTRAN execution environment, I3COM. However, in the CMS

environment, in order to rename a file, it must be inactive

(closed). There is a CMS command, FINIS, that does allow for

the closing of a file in the CMS environment. This command is

invoked from GIFTS during execution via a call to FRTCMX (see

Section A of this Chapter) in subroutine CLOSEF of the Data

Base Management Package of LIBR5. This command has been in-

cluded in CLOSEF for the express purpose of allowing a file

to be renamed, which will be discussed later in this Chapter.

The FINIS command issued in CLOSEF has the form:

FINIS XJOB EXT8 A,

where XJOB and EXT8 are double word real variables containing

the file name and file type, respectively, and A is the file

mode.

There is an additional subroutine called by GIFTS to

close a file. It is subroutine CLOSLP, which is intended to

close the line printer file and spool it to the line printer

as directed by the user. For this version, the system was

allowed to close the file at the termination of module

35

execution. When the subroutine is called, it will, if a prin-

ter file has been created, prompt the user if he desires the

file to be spooled to the line printer or not. In either

case, the file will remain on the user's disk space following

execution termination. The G4S command used here is:

PRINT PRTNAM PRNTFILE A,

where: PRTNAM is a double word real variable containing

the file name,

PRNTFILE is the file type, and

A is the file mode.

5. Deleting Files

Based on the discussion in the section entitled

DEFINING THE DIRECT ACCESS FILES AND GIFTS MODULE IBMUDB,

earlier in this Chapter, it is obvious that deletion of a

direct access data base file would defeat the logic behind

the use of module IBMUDB. When GIFTS calls subroutine DELETE

for the deletion of that file, rather than being deleted, it

is made into a 'dummy' file by writing -999 into the first

word of the first record of the file. A 'dummy' file will

be interpreted by the Data Base Management Package as not

being present. Subroutine DELETE does delete sequential

files via the CMS command ERASE. This command in DELETE has

the form:

ERASE XJOB EXT8 A

where XJOB, EXT8 and A are the same as those for the FINIS

command in the previous section.

36

6. Renaming Files

During the execution of some of the GIFTS modules,

temporary files are created and later renamed. Specifically,

the data base file types PTX, LDX, and SLX are created and

later renamed PTS, LDS, and SLI, respectively. To understand

better the need to do this, and the logic of GIFTS in this

matter, consider the file type PTS. This file contains all

the information pertaining to the nodes of the model and is

first created during model generation. The nodes are entered

in the file in numerical order, based on user assigned numbers.

Solution module OPTIM is executed to optimize the node number-

ing in order to decrease the problem 'band width'. In this

process, the nodal information is read in from file type PTS,

and the nodes are renumbered and output in numerical order,

based on the optimization renumbering, to file type PTX.

Once this has been accomplished, OPTIM calls for file type

PTS, of the current job, to be deleted and for the renaming

of file type PTX, of the current job, to be renamed to file

type PTS. The renaming is accomplished in subroutine RENAME

of the Data Base Management Package. Since direct access

files are not actually deleted (see the preceding section on

the deleting of files), but rather made into 'dummy' files,

both PTS and PTX will actually always be present on the disk.

In order to maintain both files on the disk, what is actually

desired is an exchange of names between PTS and PTX. This ex-

change of names is accomplished via the CMS command RENAME with

the form:

37

RENAME XJOB PTS A vJOB XXX A
RENAME XJOB PTX A XJOB PTS A
RENAME XJOB XXX A XJOB PTX A

Here, the file with the identifier XJOB PTS A is renamed XJOB

XXX A, then file XJOB PTX A is renamed XJOB PTS A and finally,

file XJOB XXX A is renamed XJOB PTX A. This 'around about'

method is necessary due to the fact that no two files can

exist on a CMS managed disk with the same identifier.

In subroutine RENAME, the actual RENAME command has

the form:

RENAME XJOB EXT81 A XJOB XXXXX A
RENAME XJOB EXT82 A XJOB EXT81 A
RENAME XJOB XXXXX A XJOB EXT82 A

where: XJOB is a double word real variable containing
the file name,

EXT81
and are double word real variables, each con-
EXT82 taining one of the file types to be renamed,

XXXXX is the intermediate file type 'XXX' for
the name exchange process, and

A is the file mode.

There is an additional complication to the renaming

process resulting from the inability to close a file in the

FORTRAN execution environment (IBCOM) of the IBM system.

Because of this, once an I/O operation has been performed to

a direct access file with its respective logical unit number,

that logical unit number cannot be changed. Again consider

the file types PTS and PTX. Their logical unit numbers in

38

this version are 86 and 87 respectively. If, during the exe-

cution of OPTIM, after the files have been renamed, an I/O

operation is directed at file type PTS (the old PTX file),

logical unit number 87 (the logical unit number old file PTX)

must be used. Since subroutine MANAGE 12 assigns logical unit

numbers based on file types, it was necessary that MANAGE be

aware when renaming occurred, so that the renamed files would

maintain their original logical unit numbers. This was accom-

plished by setting a switch, passed to MANAGE by a labeled

common block, in RENAME for the files that are renamed.

It was also necessary, in this IBM (CP/CMS) version

to rename, if it exists, file GIFTSS ESX A to GIFTS5 EST A'3

at the start of module execution. This is accomplished by

invoking the CMS RENAME command in subroutine INITIO of the

Data Base Management Package.

7. Checking for a File's Presence

GIFTS utilizes logical function PRESNT of the Data

Base Management Package to check for the presence of a UDB

file for use by GIFTS. PRESNT first determines if the file

is present on the user's disk space via the CMS command:

STATE XJOB EXT8 A.

12See the Section on'the Opening of Files in this Chapter.
See the section on Special Sequential Data Base Files

in this Chapter.

39

If the file is sequential and is determined to exist on the

user's disk space, PRESNT is set equal to TRUE, if not on

the disk space, then it would be set to FALSE. For a direct

access file, if the file exists on the disk space, the first

word of the first record is read and if it does not equal

-999, PRESNT is set equal to TRUE, and if it does equal -999,

it is a 'dummy' file and PRESNT is set equal to FALSE. If,

on the other hand, the file is direct access and is not pre-

sent on the user's disk space, PRESNT stops module execution

and issues the message:

UDB FOR JOB XXXXXXXX NOT CREATED VIA IBMUDB.

where XXXXXXXX will be the job name provided GIFTS by the user.

E. THE ADDED ASSEMBLY ROUTINES (LIBRSA)

For convenience, all the assembly routines for this version

of GIFTS have been placed, as entry points, into LIBRSA. A

listing of LIBRSA can be found in Appendix H.

F. IBM (CP/CMS) INSTALLATION INSTRUCTION

The installation of GIFTS on the IBM involves the trans-

ferring of the source code from tape to the CMS disk space,

the compiling of the code, its loading (linking) and execu-

tion. This section covers the steps necessary to install

GIFTS on the IBM system at the Naval Postgraduate School.

Installation on other systems should vary only slightly.

40

_7

The GIFTS source code is received from the University of

Arizona on an unlabeled nine track tape. Accompanying the

tape is a tape directory indicating the names and sizes of

the files and the order in which they were written onto the

tape.

At the Naval Postgraduate School, all but one of the tape

drives are attached to MVS (Multiple Virtual System - the batch

operating system). Because of this, it has proven expedient

to first transfer the files to an MVS disk and then to the CMS

disk space. Transfer from the tape to the MVS disk is accom-

plished via the IBM OS Utility IEBGENER. A listing of the file

TAPE2MVS JCL (which resides on the GIFTS disk space), containing
14

the necessary job control statements for the transfer via

IEBGENER can be found in Appendix I. These job control state-

ments will cause the first 37 files on the tape to be trans-

ferred to disk MVS004 with the respective file identifiers

S3161.FILEI through S3161.FILE37. To transfer the files to

the CMS disk space, it is first necessary to link to and

access MVS004. This is accomplished by issuing the commands:

CP LINK MVS 36B 36B RR
ACCESS 36B E.

Once this is done, the files can be transferred to CMS, re-

named in accordance with the tape directory, and packed, by

14These job control statements are for an 800 bpi ASCII
tape.

41

the use of the CMS commands listed in Appendix I. At the

Naval Postgraduate School, these commands are contained in

file MVS2CMS EXEC (on the GIFTS disk space) and can be exe-

cuted by issuing the command MVS2CMS. For future updates, if

the number, name, or order of the files to be transferred

differ from those now listed in TAPE2MVS JCL and MVS2CMS EXEC,

appropriate changes should be made.

All the FORTRAN program modules and libraries, except

BULKM and BULKS, can be compiled-with the IBM FORTRAN G com-

piler. It will be necessary, due to variations in the FORTRAN

used, to compile BULKM and BULKS with the IBM FORTRAN H-extended

compiler.

Following compiling, the program modules and libraries are

ready for loading and execution. This, as an example, can be

accomplished for program module BULKM, via the CMS commands:

LOAD BULKM LIBRl LIBR2 LIBR3 LIBR4 LIBRS LIBRSA
START.

At the Naval Postgraduate School, this is accomplished by the

use of an exec file (see Appendix H).

G. IBM (CP/CMS) USER INSTRUCTIONS

The user's instructions for the IBM (CP/CMS) version vary

only slightly from those contained in the GIFTS User's Refer-

ence 'Manual [Ref. 1]. Appendix J contains all necessary

additional information to use this version at the Naval Post-

graduate School.

42

IV. SUMMARY AND RECOMMENDATIONS

In summary, the IBM (CP/CMS) version of GIFTS developed

is a self-contained, portable system that will allow easy

installation on other IBM computers with the CMS operating

system.

It is recommended that additional work be done, at the

Naval Postgraduate School, on the Graphics Package to enable

the use of the Tektronix 618 graphics terminals being installed

on the IBM system.

43

APPENDIX A:

DESCRIPTION OF GIFTS MODULES

IBM DATA BASE INITIALIZATION

IBMUDB A program to create the dummy15 data base for the

IBM (CP/CMS) version of GIFTS.

MODEL GENERATION AND EDITING

BULKM An automated three dimensional plate and shell

model generator. It is suitable for large contin-

uous structures that can be easily modeled by

repetitious generation of points and elements.

BULKS A three dimensional solid model generator. One

may ask for the display of the edges, and may add

and display selected point and element slices.

EDITM Designed to update and correct BULKM models,

although it can be used to generate simple models

and ones too complex for BUJLKM.

EDITS A three dimensional solid mesh editor. It may be

used to update or correct BULKS models, or to gen-

erate simple models and those too complex for

BULKS.

Iis

iSee Chapter III, Section D, Subsection 2.

44

LOAD AND BOUNDARY CONDITION GENERATION, DISPLAY AND EDITING

BULKF Suppress those freedoms which the generated model

cannot support, thereby relieving the user of the

necessity of suppressing all superfluous freedoms

by hand.

BULKLB The bulk load and boundary condition generator

designed to apply loads to models generated with

BULKM. It may be used to apply distributed line

and surface loads and masses, prescribed displace-

ments along lines and surfaces, and inertial loads.

Temperatures may also be applied to lines and

surfaces.

LOADS The load and boundary condition generator for

solid models. Loads may be distributed on lines

or surfaces. Loads and boundary conditions may

be displayed on point slices.

EDITLB A display and edit routine intended to provide

local modification capability to loads and bound-

ary conditions applied by BULKLB. It may also be

used to generate simple loading on models, or

loading on models not generated with BULKM. Tem-

peratures may also be applied to elements. After

DEFL has been run, the thermal and combined loads

may be examined.

45

GENERAL PURPOSE COMPUTATIONAL AND RESULT DISPLAY MODULES

OPTIM Band width optimization program. OPTIM may be

called several times in a row, until the best

node numbering scheme has been achieved.

STIFF Computation of element stiffness matrices and

their assembly into the master stiffness matrix.

SAVEK This program saves the newly computed stiffness

matrix.

PRINT Program used to print out parts of the stiffness

matrix and directory for specified GIFTS models.

DECOM Introduces kinematic boundary conditions, and

decomposes the stiffness matrix using the Cholesky

method.

DEFL Computation of the deflections from the current

loading conditions and the decomposed stiffness

matrix. If temperatures are present, thermal

forces will be calculated and added to the current

applied loads before solution.

STRESS Computation ofelement stresses based on current

deflections.

. RESULT Result display. The program displays deflections

* I and stresses. It has many options that may be

used, at the discretion of the user, to transform

the results for optimum comprehension.

RESIDU This program computes the residual forces on a

structure solved by the GIFTS solution programs.

46

THE GIFTS NATURAL VIBRATION PACKAGE

AUTOL Used to generate starting loads for the subspace

iteration to compute natural modes of vibration.

SUBS Performs a single subspace iteration to determine

the model's natural modes. It must be repeated as

many times as necessary to obtain convergence to

the desired extent.

THE GIFTS TRANSIENT RESPONSE PACKAGE

TRANI Used to specify the time step to be used in the

integration process and is to be run on a tran-

sient response model immediately after stiffness

assembly.

TRAN2 Computes the displacement matrix for time T and is

run after TRANI and DECOM.

TRANS Maintains and plots histograms of the displace-

ments of up to four different freedoms.

THE GIFTS CONSTRAINED SUBSTRUCTURING PACKAGE

DEFCS Program to define a constrained substructure's

(COSUB) boundaries and external nodes.

REDCS This program generates the reduced stiffness and

loads matrices necessary for assembly of the

'COSUB' in the main analysis, as well as the trans-

formation matrices necessary for local analysis.

47

LOCAL This program performs local analysis of selected

'COSUB' models from a major analysis.

THE GIFTS LIBRARIES

LIBRI
LIBR2
LIBR3
LIBR4 Commonly used machine independent subroutines and

functions.

LIBR5 Machine dependent FORTRAN subroutines and functions

used for graphics, character manipulation and data

base management.

LIBRD5A Collection of CP/CMS assembler routines used by

LIBRS of the IBM (CP/CMS) version.

48

APPENDIX B:

SUMMARY OF CMS COMMANDS USED

COMMANDS USED IN PROGRAM PREPARATION

EDIT Used to invoke the VM system product editor to

create or modify a CMS disk file.

COPYFILE Used to copy CMS disk files according to given

specifications. Used in GIFTS implementation to

'pack' FORTRAN source code to conserve disk space.

FORTG1 Used to compile FORTRAN source code using the Gl

compiler.

FORTHX Used to compile FORTRAN source code using the

H-extended compiler.

TXTLIB Used to generate and modify TEXT libraries.

LOAD Used to bring TEXT files into storage for

execution.

START Used to begin execution of programs previously

loaded into storage.

COMMANDS USED IN GIFTS FOR FILE MANIPULATION

ERASE Used to delete CMS disk files.

FILEDEF Used to relate logical unit numbers, devices

and files.

FINIS Used to close files in the CMS environment.

49

PRINT Used to spool a specified CMS file to the virtual

printer.

RENAME Used to change the names of CMS files.

STATE Used to verify the existence of CMS disk files.

so

APPENDIX C:

THE UNIFIED DATA BASE FOR THE IBM

SEQUENTIAL DATA BASE FILES

FILE LOGICAL
TYPE UNIT NUMBER

CFR 27

DGT 23

DYN 28

HST 25

SAV 24

SPECIAL SEQUENTIAL DATA BASE FILES

FILE TYPE OR LOGICAL
IDENTIFIER UNIT NUMBER

SRC 26

GIFTS5 INF 21

GIFTSS EST 22

GIFTS5 ESX 29

:31

rl

" ., -. ,. 1 I, -' ' "-5 1

THE RANDOM ACCESS FILES

NUMBER NUMBER IBM IBM LOGICAL
FILE OF OF BLOCKING SP DP UNIT
TYPE INTEGERS REALS FACTOR WORDS WORDS NUMBER
CDN 4 180 1 184 364 51

CEE 4 324 1 328 652 56

CLD 4 180 1 184 364 52

DNH 0 6 10 60 120 64

DNI 4 180 1 184 364 53

DNS 0 8 10 80 160 65

DNT 2 72 1 74 146 75

ELD 6 32 S 190 350 77

ELS 0 12 10 120 240 78

ELT 25 10 10 350 450 79

FIL 5 1 1 6 7 98

GRD 43 10 S 265 315 80

INT 5 0 10 50 50 81

KEE 4 324 1 328 652 57

LD2 0 8 10 80 160 66

LDC 0 8 10 80 160 67

LDI 4 180 1 184 364 54

LDS 0 8 10 80 160 68

LDT 2 72 1 74 146 76

LDX 0 8 10 80 160 69

LIN 31 9 10 400 490 82

MAT 5 11 5 80 135 72

52

NUMBER NUMBER IBM IBM LOGICAL
PILE OF OF BLOCKING SP DP UNIT
TYPE INTEGERS REALS FACTOR WORDS WORDS NUMBER

MEE 4 324 1 328 652 58

OPO 2 0 40 80 80 73

O 4 0 40 160 1.60 83

0P2 2 0 40 80 80 74

0P3 1 0 40 40 40 84

PAR 25 0 1 25 25 97?

PLD 6 8 10 140 220 8S

PTS 10 17 10 270 440 86

PTX 10 17 10 270 440 87

RES 0 8 10 80 1.60 70

SDY 42 0 S 210 210 8

SD2 21 0 S 105 105 89

SLD 129 9 1 138 147 90

SLI 18 0 10 180 180 91

SLX 18 0 10 180 I80 92

STC 4 324 1 328 652 59

STF 4 324 1 328 652 60

STR 0 8 10 80 160 71

SUR 4 26 150S 280 93

TDE 4 324 1 3128 652 61

TEM 4 324 1 328 652 62

THS 6 15 S 105 180 94

TIE 4 324 1 328 6S2 631

53

NUMBER NUMBER IBM IBM LOGICAL
FILE OF OF BLOCKING SP DP UNIT
TYPE INTEGERS REALS FACTOR WORDS WORDS NUMBER

TLD 0 84 5 420 840 95

TMP 0 28 5 140 280 96

UGC 4 180 1 184 364 55

54

0 000 0 CL

Luu

U

LL V) 0
- 9%

-.. .a Ja.X .. a.a-vCC V) W

oLQ C9 j -o o I-

LU wo
C) -w.q~Z.lilja

0~

0 0- 1aa a~~ a
Ul . CIWXAaaa-QM; a -

X LLL

I-- 4

- A 0 i t f

~~~c V J U)0S-0%~ LUZ a L

QCCC LU U A .6 LU

z. $A - f-V

a. 0VI* w ft ft aw . 0 a ft.. - as .aaaaaaaLaaaaa>
0 ON -of .. )UJ-Z040%.0..JZ - If Z LU--..LL OLL.6L L

W' LO Z x ku 111ainaasaa 0 WJ LU z .000'INNU
LO C V.1 ... *a -Z ... u LL tn 01- ww wwo
-Z *Z W 00- (fl - LUZ 0aa a zaaaaaa
~) 4 iw if -i I * i 1--u 0." ~t 0.98

*W X- 1, at P* .9(J - . - 1a- Z .-. w alJ WU W wLJU..

I. Is MO LUca ,xzww LO W 0 000
U - ~~( 4 - -- ON~tJU~Or-0%04

* I- I U.ZUU 0% -

IC Z . 0~* W

Z ~0~U 0~aO.-0u0 ql ~ n wU~wW~wwww



0~e~OOOOOOeOeOOOCOOOOOOOO
J

C2oooeeoo OeO ooo~o~eO o~eoO

-oQOOOOO-----OO-0 OOO-tOO>O>O> OO>O>>O>OO>O>O
>>>

N3

--0. 4 -- T r C WW

V) Lf- a a - a -- -=a -

~ aaa aaaaa - 0 0 .0 t a 0 0 0 0f to *0 0

N~a 00O 000u ' L) 0 0) u Q u 0lU (j

P~..4 (~ A 4 ? -4 N N -.6..



000000000000o00000000

'~O~00000000-.--4-~4Nc

LU

Xw

- LS

'CZ-

Co( L >
-- 4J -

'CU. 4

aZ

cw) -

> O~- cc

Z -O U
41- V

cc P.. . cc
In ,--O 0

zX-0 LP U.

LU LL LU LU LL U)*C a-1
-j jL C -j -JC 4--.ax x-4 x .

b - -4 -- M4 z - U)( LU
*'C-LL U.(.6IL1

I~L mA mm -. s

- .,Q%4i Coco.44. C4o

U. U. U.U. U II~in.~ % 57



;1

APPENDIX E:

THE IBM (CP/CMS) GRAPHICS PACKAGE SUBROUTINES

(* indicates a modified or added subroutine)

ANMODE Places the Tektronix 4000 series graphics terminal

into the alphanumeric mode.

CURSOR * Turns on the graphics cursor, and reads back the

x and y coordiaates of the cursor position when a

character is struck on the key board. It also

returns the value of the character struck. This

subroutine calls assembly routine RDADE for the

input operation and TOEBCD for conversion of the

character to EBCDIC.

DINIT This subroutine clears the terminal screen and

positions the graphics cursor at (0,0) in the

viewing area.

DRAW Draws a visible line from the current beam posi-

tion to the absolute coordinates provided.

FLUSH " This subroutine dumps the graphics output array to

the terminal and insures that the last character

in the array is US, which places the terminal into

alphanumeric mode preventing the interpretation of

interline characters, sent by the IBM system, as

graphics characters. Assembly routine WRTADE is

used to dump the buffer.

58



INTERP This function linearly interpolates point coor-

dinates for graphics output.

LINA This subroutine will draw an invisible or visible

line, as directed, from the current graphics cursor

position to the absolute coordinates provided.

LINE This subroutine will draw an invisible or visible

line, as directed, from the current graphics cursor

position to the absolute coordinates provided.

MOVE Subroutine that invisibly moves the terminal's

graphics cursor to the absolute screen coordinates

provided.

OFFSET This subroutine switches the Graphics Package

between the 800 x 800 main viewing area and the

800 x 223 offset viewing area.

PLTCHR * This subroutine computes, and outputs, the graphic

control characters necessary to draw a line from

the current beam position to the absolute screen

coordinates provided. It will send the minimum

number of characters needed, from one to four. If

the output array does not have room for at least

four characters, it is flushed to the terminal.

Following the flush, the terminal is placed back

into graphics mode and the cursor moved back to

its position prior to the flush.

59



PUTCHR This subroutine adds characters to the output

array. If number of characters in the array

reaches NCHMAX, the array is flushed.

SETPT This subroutine invisibly positions the graphics

beam to the absolute screen coordinates provided.

TABLET * This subroutine reads one point from the digit-

izing tablet. It is currently inactive in this

version.

TBELL Rings the bell on the terminal.

TERASE Erases the terminal screen.

TEXT * This subroutine outputs characters from a provided

array to the screen, starting at the current alpha-

numeric cursor position. The text will be clipped

at the edges of the screen. Assembly routine

TOADE is used to unpack the text and convert it

to ADE.

THOME This subroutine moves the graphics cursor to the

home position, and switches the terminal to alpha-

numeric mode.

TINITT * This subroutine initializes the Graphics Package,

clears the terminal screen, and positions the

graphics cursor at (0,0) in the main viewing area.

NCHMAX is set equal to 79 here.

60



TWAIT This subroutine causesthe program to wait for a

given number of seconds. This is accomplished in

this version by the output of a string of non-

interfering characters to the terminal.

WRTADE * This assembly routine converts an array of ADE

characters to EBCDIC and sends them to the ter-

minal with the interline characters suppressed.

WRTADE is an entry point in LIBR5A.

RDADE * This assembly routine reads characters from the

terminal, converts them from EBCDIC to ADE, and

places them into a specified array. RDADE is an

entry point in LIBR5A.

TOADE * This assembly routine converts a string of con-

secutive EBCDIC character into ADE characters and

puts them into consecutive elements (right justi-

fied) of a full word array. TOADE is an entry

point in LIBRSA.

TOEBCD * This assembly routine converts a string of con-

secutive ADE character into EBCDIC characters and

puts them into consecutive elements (right justi-

fied) of a full word array. TOEBCD is an entry

point in LIBRSA.

61



APPENDIX F:

THE IBM (CP/CMS) CHARACTER MANIPULATION PACKAGE SUBROUTINES

(* indicates modified or added subroutines)

DATEP * This subroutine calls IBM Operating System function

DATIME for the date and converts it into 3A4 format.

ENI * This subroutine encodes an integer into a floating

point variable, left-justified and blank filled,

and returns the floating point variable and the

number of characters it contains.

FREAD * This subroutine controls interactive I/O operations

with the user via the terminal.

FREAD2 * This subroutine controls interactive I/O operations

with the user via the terminal or digitizing tablet.

INCCHR * This subroutine takes a single character, left-

justified and blank filled, and increments it by

one.

INCHAR * This logical function reads a line from the user's

terminal or steering file as directed by subroutine

FREAD.

INCHR2 * This logical function reads a line from the user's

.q terminal, steering file, or digitizing tablet as

directed by subroutine FREAD2.

62



INCNM * This subroutine takes an alphanumeric eight char-

acter name and increments the numeric characters

in the name by a specified amount. Calls assembly

routine BTD.

INIHVL * This subroutine initializes the hardware value

list for the computer hardware being used.

INMENU * This subroutine reads an input line from the

tablet menu.

NUMCHR * This subroutine counts the number of non-blank

characters in a single alphanumeric name.

PAKAL * This subroutine packs alphanumerical information

into a single word in A4 format. Makes a call to

assembly routine ENCODE for this.

PERCNT * This subroutine encodes an integer followed by a

'%' sign into a floating point variable and then

passes it to subroutine TEXT of the Graphics Pack-

age for inclusion in a plot. A call is made to

assembly routines DECODE and ENCODE to aid in the

process.

SECOND * This subroutine returns the elapsed CPU time in

seconds. CPU time is obtained via a call to the

system routine GETIME.

TIMEP * This subroutine gets the current time of day from

the operating system, via a call to DATIME, and

reformats it to 3A4 format.

63



UPKAL This subroutine unpacks text in A4 format into a

four word array with one character per word, right

justified and zero (null) filled. UPKAL calls

assembly routine DECOD for this.

DECODE * This added assembly routine unpacks a string of

characters (4 per word) into a four word array

with each word containing one left justified

character. DECODE is an entry point in LIBRSA.

ENCODE * This added assembly routine packs a string of

characters contained in single character words,

into a single word. ENCODE is an entry point in

LIBRSA.

DECOD * This added assembly routine unpacks the characters

(maximum of 4) contained in a single word into

four single character words, with the characters

right justified and the word padded with zeroes

(nulls). DECOD is an entry point in LIBRSA.

BTD * This added assembly routine transforms an integer

into a string of alphanumeric characters. The

string is right justified with the rest of the

string filled with a character provided by the

user. It additionally returns the number of

characters in the string. BTD is an entry point

in LIBRSA.

64



ENF This assembly routine replaces a FORTRAN routine.

It translates an array in 3A4 format into the

floating point format IPEI0.3. ENF is an entry

point in LIBRSA.

65



APPENDIX G:

THE IBM (CP/CMS DATA BASE MANAGEMENT PACKAGE SUBROUTINES

(* indicates a modified or added subroutine)

CLOSEF * This subroutine closes an active file in the CMS

environment via the CMS command FINIS. In addi-

tion, if the file being closed is GIFTSS ESX, this

subroutine calls for the deletion of GIFTSS EST.

CLOSLP * This subroutine spools to the line printer, if

directed by the user, the line printer file via

the CMS command PRINT.

DEFIN * This subroutine associates direct access file

identifiers with their respective logical unit

numbers via the CMS command FILEDEF. It will also

zero, or expand, a direct access UDB file as

directed.

DELETE * This subroutine makes direct access UDB files into

'dummy' files and deletes sequential UDB files via

the CMS command ERASE.

INITIO * This routine initializes the logical unit numbers

-I for the direct access UDB files, defines all

direct access UDB files, turns on the IBM CPU tim-

ing via a call to routine SETIME, and the current

GIFTS version number. Additionally, if file

GIFTSS ESX exists, it is renamed GIFTS5 EST.

66



INRA This subroutine performs all input from the direct

access UDB files.

OPENIF * This subroutine opens a specified sequential file

for input by associating the file identifier with

its respective logical unit number via the CMS

command FILEDEF. If the file is GIFTSS INF or

GIFTS5 EST and does not exist on the user's disk

space, it is specified as being on the GIFTS

system's disk space.

OPENLP * This subroutine sets the line printer file logical

unit number and associates the file identifier,

provided by the user, with this logical unit

number via the CMS command FILEDEF.

OPENOF * This subroutine opens a specified sequential file

for output by associating the file identifier

with its respective logical unit number via the

CMS command FILEDEF. If the file to be opened is

GIFTS5 EST, file GIFTS5 ESX is opened in its place.

OUTRA This subroutine performs all output to the direct

access UDB files.

PRESNT * This logical function checks for the presence of

a UDB file. If the file is sequential and not

present, PRESNT is set equal to false, and if it

is present, PRESNT is set equal to true. If the

file is direct access, present on the user's disk

67



space, and a 'dummy' file, PRESNT is set equal to

false. And if on the user's disk space and not a

'dummy' file, PRESNT is set equal to true. If the

file is direct access and is not present on the

user's disk space, program module execution is

terminated.

RENAME * This subroutine uses the CMS command RENAME to

effect the exchange of names between two UDB files.

When renaming occurs, it also sets a switch to

indicate to subroutine MANAGE that the renaming

has taken place.

MANAGE * This subroutine will assign a logical unit number,

if provided with the UDB file type, or the UDB

file type, if provided with the logical unit

number. If a file has been renamed, MANAGE will

relate the old logical unit number with the new

file type.

SLTASN * For this version, SLTASN is a dummy routine.

FRESLT * This subroutine was moved from LIBR1 for this

version and is a dummy routine.

FRTCMX * This assembly routine allows CMS commands to be

invoked from the executing program module.

FRTCMX is an entry point in LIBRSA.

68



CONVRT * An assembly routine used to convert a four byte

integer logical unit number into an eight byte

real number. It is used in passing information

on the logical unit number to FRTCMX for the exe-

cution of CMS commands requiring the number.

CONVRT is an entry point in LIBRSA.

69



000O oO NN0N C C
ujOO000000000000000

O00OO00004O0O0O0000O

41111441111111444444
394

~ * *

o * U.*

-L> 41 QU 41

< <000000 Q

S * LU LU4*

-. *L cx-

'-i cc U. *4j Lq
xI ** *~nro

91 * LU p*

E- 41 0-i
X 2: ac
4% <



r OOOOoOO0%0P4OCtn %O- oo ONMOtAoOO oo ON OCOOOp- oOOOOO~

OOOOOOO OOOCOOCOOOOOOO O oO.OOOOOOOOO OOOOOO

*0 4

41 z(n4

a: Q0. 41 iZ0

Q20w 0-9 ~U.Q Z
u* Ut- CC U. W-t- L

4 ) -A. W * x 0c:Z

Q4 LUZ a (b < <'I-- U.9-i
x 1c Q..0- jc1-41-b 04j

<QC ccw w4 U. ~ 00. U. JC
(3* " xWZO . (341 4 >41. U.4WV)-
4* 9--1 4 04 * 0.X . =a- x q

(n * -i 4c-L 41K4 U.co c LL.at
Q 1~ w 410 < IA InaWO 4IU.fO
=.4149- % < Oil 1 <>40 119 .40Z 0

4L ot" .- 4 N--r Ln )- ifO4'3% 1
(44 3t .J C)-J 4 Oc Xc03czz w~l-1

-a* 1Z.)-004 40..4 Wb--0O
S 410- m g 41- czl e4o~ 04 0 .

LL 41 4'- U4zz 41 N+ '1 CLlH0W-4- +N
4W 41 -i- 0* 04ff (3 41 - (XZZ 'ZZ1

z 41)Z W (b W WW 4.J 4 c

C)1 Z CD4 W~ N.W4 Z -1Q049-V4-4O.4 4, <

*C wee <3 41I- J

9-41 W 41)- (3 -=-5
Z* u ccZ 1 W U- '

-. 4 * '3~~~~0 4 W 9 3 I 3 1s ~ W

-MC 4 U. 1.
41-< 41W C

at= ca Q1 V I)
413( 44.9Z 0

71



OOOOOOOOOOOOnQf- OC)OOOOOn or- 00%0 " OOOO4"A OOOOOO oo-IN

c~ L

* Aft Q 1
LU q*

* 9 ui . -L*
*4" w *-
410 * 0q 14

cc U.I..* Ln Z Z ) I <ML
w.I < 4UM 0.4 CC.4L-O.

x <X -!* LA . z 4II L 1

Q I-.-. Z* 40U- X z c
* J~ U. 041-*7.C JDO d-
* 1fl0 - -4 Lux Cc VV -n 0 m c

* u-O IC *41CX zr 1% O ZZ4
IUXV cc f9-War a. Oea4 L- WO

S* ute 4 ZU41 494 0 ooau--
* - -1) =--4 9-a (1 if 11.A X9.)X> X
41 ~ 9- i <4 U 0W4 It1 on 10 - LU"l

=4% < 41 494 MJ U.LA Ze WC U. Z RU.c N

I 4X=1I- UJW =* a0u ~Z
* u 4 .0 a w* -.1 n

I ~ ~ L.J- Q1 K' L.U 1~ (
41 z LL9- * U. O0 w - L~. 3

41 : 9-U' 4) xl 41 4* ..J Zl -.4 ( W

I 1 4Z 4u Z-44 a 0 z 00- CL- CcKZ
Q1 Z V r44 aI "00 -

I40 K- loll4 "I NN mr Z 0,ra t

ZC 419 00.j" -. 1 OQ0"4 t tf
W I9 -1 Xc% *4 e--r1- Z -

41 U .. -J UW4

w1 z- zLU~4 w cc 1-)z

U4U (z0 ~ W4

I 41 -i= wZ * WU (%~ -OZ z.
41 JZ U ) 4 0 -4444 0 0-'4~
I ~ ~ ~ ~ ~ ~ ~ ~ ~ IZ 41 9 ii 4 .UL 'N f9J~.-O I~

41 ~- 4 ~~~N-444 * 4U r-.'Q~.cc

I~~~~~~~~~ 41 4 X21)U. w 0 w Z~ w Z~



co00a o0o000oCoc 00o0o00m oco0c00c 000ocoo0o0cmo00o00o o0a0oaa0mo

~c

*I. Cr W.

*44 * a. a.
L * C3

*Uo cf. OW

ULZ LU %a* O
COLw0 0 *W-.r=*~

*w =cc 4 "WI-* acZf
*I-a Z I- * U"t

*w 3 * -%QZ* 4%
>VU) XW..L* p4c
1..-0-j 4 - at-J* i,-Q' 4

04 U* =cI-

WZ 4 = Z.* x Zi IZZ-40
*0 U. Z '-0na* < 4< maU. u
*fQAILJ - C(* 0. CA. CL r.ZZZ
* cx Lu zco* 01U.Wulo
*U.- 0 '4W U. U.LU.) 1- .j
*01-0 4 * 0 O000.wu4a0-

*L 0 W (flU.* -. i--.i4

Z cf. -*000~Q~ z
*-40 _.j )0z Q4000 cx c
*cWZI- ..J MZc* <C0-4400WUM--. m

f1- 4-M 4 * I IfI 11 11 Ut=>I-X0C
*( U090* Nuvno~cW0 LuW~o LU

*14Z O3
* We.. *' 3* w
*4fl.JX LU LuJ- * u

u 0:-j -n

*wJ-C LU MZZ* + -Cc4
* Zo-LU.* LUC w Cf. 0 o- (A C

*ZU 0 3 0- <.4 -- 'UW- * qe4.
Lw' ua II UN I 9 CC-4 n ZI --* 4-0~'I~J >.4

*JZ <1 iU* LU -. O-Wwov)W ONOwW~-4 AI
* 4WLA CD .=O*0* 0o c~ 0*-- W0~J .- 4a

.WaXZ z .*-4IN'P a . ft a. c' win Lu

4 0 0U
*1-0 4W * C 1

*W'-> LU Lucai
g*Z-dSU = *Z JLJ'A4w1-4< l'44L) <-U qa-Z

*CQI-Z U.. * Lu

73



* * LU

*tW WO Q

.0 -JALO* C.

*0-cc* 0 ic
*WU)a cc ZU)J*z u u
*uZ < .4)* cc

-n, Ik *1- W o- * 0~uL

I0 * -Zw *
I *O-tx cx ~ MLU U* U~
I *Z = 4 CZWO* 44 1
I ~*010- ZLWw4* I

*it. 4c -J LU * Q.-CU C -
Ir z~ CqqU* NMIC.X -4rq

Ui Q qA%* W lxwobZ ).Qr4c
*1-U co 4AXZZ* At 44 Q '01-4

I*L) LU I-4jQ. * M. 0.0.IJZZZ U)C.LUJ
I*-aw u Z4 U.* t-09- -, l'-

*CC- w- U WO* LL L.U. &L .-jCCLL.
4
9

S*.40 ZU.0 * 0 OO0..00..J
I~*=U ..j W04LO* (A -4j..-W

I U 0 MC LU>Zo'4* OCC o'03Com= .9-04t z
* I*LUj 44 * 0400 CUWCDCC

I ~~*QZZ Uc I-4 C4W--..Zi
I * 4- 0IfU)U)* 1 If II If> X 0 11 QUW II )

*cc *. 4z * N~rOOW0'tW...I.O LU
SZOI- Ill w~ "-* WQ=zzz-jwo WI- I=

*tn>)M wU xzOZ-4 LU
m M4~ Z0=) tn. -i

I*WWI.- a Zo-.oo * cc %ten '
*Wcru LU + 0x +-- *4

I*.-44 4 It Q U 4%a n x - C
f * z =Z toI CO C0 44z S z V)-.~ 4xN
I * 00-4 C3 OZW 11* W% LUJt Lft> 4N 4-.4nIA O%1 Z-- >-4

* I*QM= Z =0 X*0.4 0~.4044 cw4~o 40
I* C.U U4 4*Q U C1J-LJU)) cc~a4 cA4

*QZ Z~d Y.* 0O- -4 -W - I. 004' 'r.4.a0I- 4 0
I*Wp9o- .j * uJ-o-4%O "LUE clu M "n t Ij1
I **Cc0 q9 0 ~ .0-.. N -. -4st-4t CO

UJLUWO U *--4U4I-.4 u
* I*0=1. *i 0

I*WU. CI I. 7*1 P-4 U - I-LJ

I*ZOW 1 39 *Z uti4gU)i~l4 ><-au L- czxcc

* c LU

I * J10- cc0

I 74



c OOO coo= oOoOaoOOeaooOOccOoOcoOa o OOoca OOO Me fnmOOOmMOOOO

LU

o U.

LUL

o"n ujO I-
I-Oa*QQcUfOr-

LU r.. u.,Q-f Oor-ou U LLA. -.UtooW.CJO O O

4D 10 ww~q1QwuNufQt U L W 'Onw O O OC O

0 00 4tO~- 0ooou.,-OoolroOrloe cc

LU U CnmULU C04C LU U UU0.tU4UColo fo0OOrnc

0 raWLUONO co 0 aOO~Lm0OOQ

N N"wU.NNONO c M00 0~r00000o cmC%" 0 U.

0~ ~~~~ L)V' 0 0 0 0 00'04

Ii 00000U00 000000'0.0outflc

9 U l~IfU.UW4 LU 0n000000-0tr -L
rn- <OrNL 1 0 00 tCfUL

I~c c0 0.4PLU O4 000 00 0'0Z4gLL
4 NLr'N' ' 4c Z NOQOOOOiINOfI 0 U

I- 0 U.U0q' -0~-.-400 004"~75



ri iJJ.--- J- ---.-. iJ:*"

0 - * * n
* u 49. 3 4*1
*u 491 0 *
41 -oz Z41

Z14~- *-asd 0.

* .J41L Z.9 L*

0 w (41LJLU U *

41LU4141- 1 41

*4* 01 000 C30~
M * noc LIO -u 41

41 C9 cc -W6 WI- -14

*ulv U.41C In~ 4wz4
41(n u u. 1 I-- 41 S

41Z4 ac- co-40941~
cc 41WOIn U..ZZZc *
41 ~41 .4 mcgoLIIw41 =f

014 -00
4 6 o41 L&Z - 24 44
41:)j LIL 0-.-%-4

41 J4 I-I Z 41 0 K-
41 4 ow 00j 41%. f-w4b

V) L6 V1 U~*4
Q1 41 L0W 1- 4 - w

CC 2 1UI 0 41c -w ZJ ujW

41 OUZ~ ow I- Mu4

41~~L 41f 14 1
411-41w C)I 4s

41~~~~~ L 1.UWZ4C. .0 11W

**1 1 4 1~ .50 .~ 1WK QJ9-44I76



* cc 41* LUU

LU* z *ma

* 9 *
* LU U.

* -L 4C IL L 4 I-

-LU-tU 441j~u -t A

41 O*V 0~00'. 1
* 9)U ad0 .9 41

=I-LflW.= 4 0 I

41 L4 Z 41 C-

* L - UJ1C 41
41 K aw *Z.Z 41 L
41 c U0. -4C 41

* I-LL z LLL~ ~ 41,

41 in- ). )Z 4

41 U4 41

4L 41.1. Z -- 4:)

4r.0 -Jul Q1 %j -f.-
41 ~0 * 41

41j- U 4 C-4-J- IVV-JV"lJJO U

41~~u ZS9 U 4 -j

41 ~ Z ~ 41 0

41 LL 41 ~ L~w77

41~~~~~7 7~*4 ~NNH0~s



"""* - * i

4*.4U 2-4 *%ZcI
* I 44 CL

~ at

*oc gi 4c~ ) WW

Wal a M- In
* U 4Z.Z 41~tcr V)
41 -0 LLI- 41 ~ 4f-f~ur " c

co 41c ft c-.tWl (D.4-. 41
U. ft 6.4 S.Q f .a t*-

W) U. wJI u..ZZ0.(%ZF)-.OL
41 U.-fto) 0 Z )LJU 41

cc4 W).) *0-441jlg
-9 41r *c =4QZ4<W 2Q w

41 UJZ3 49.1J 1

41 £~X78



MM^ M M MMMNM- t - t0t--W

ccooO~ro o@cioda owooo OCCCOC ooocoococ oa03 w ccD13o c OeOOo oot O1 oca

* LQ 3 *
41z *d-UL
* # 0Wn )4

(AICL 41o

41-',, U, -U 4

* - .4w c 0 41
Luc 4341ZZL
W1 . WUfl U QLL. 41

0 41 L M-~i4
412- t4tAZZ 41

4 U 0. VLfr(3.LI 41

xw~ "u"4LZu Ca41 zo

41 (A -d Iz 4I-ZI-I-~ (0 *
41czOq I-06-io40 I Z 41

L4)ujwZ4z X Q 0 34 -41-
I 4zfl . x 41amc-UUj --

41 fl0u I Z u.Z&.'-W - 4

I *L'W~ 4 004b- Z- 4

-CIw z14L j LUXZ~ 41* 0 M O cc oc-
X LL410 -(3 ( I- 144 7.D (*I'Am A 0s 0.OW..0=

41UJZ" U) e( .Z ?- 4 M I-LI MW 41 -XLJIN M -4~tusl~
0=j~) *v 41 --Z0 c o

0j. m1 Z) 0 C ."

41zJ -Jc Q) M-Z = * -u UP-w >Z _U
m *4 4cI-..U Ix 0.W, 1-,1 *WO CCIO w .J --

I 41 4U)...~ ~ ...j Z w1 wI0 00)m~)
41 )~U. LU I(3~ Z ~ '.~ ?s * UJ

4 41 p~q~uj U @/) .- 7-'O 4 ' ~ 3 41 (LI(%J*UI'.tL

I 41 X..J'nZ IO Z I-Z..O j~ (3 79



OOO OO OOO OO O..OO OO...oOeO..OO ... O~

*~~~~~~~V I O. r Oo - no- - O 4 '

+ I-U I- +1-Q-- -d 4

V)%ktLV Lnqf v I- N
LI.. Z U.. zl- z LMJ-u L~~zu0 +*W Z + -4 -Z o

"t -W -U LU) a a
Cn. W Z UQ - 0n

*i-mm xx x IU- _*- l-- -r X,.449 cw 3 a z ~

0 80



0000000000000000000000 00
+ CO .0000 0O0

V000000000000000000000000

Lu P-e NzS -c- U- 0 -

-OZZ -O z N4P4 (MOOOO 0o
-)% 0.4 fa 0 0- b.) - . -L0000 0 -u

-0~ - 0 -- 4C20 044 0000 0 Jr:

4OQ WZ "cx ca~J.~ u00 -
z%-IAZQ _4NZL 000- (J00OO000ow

*.0Q 0 ,-CJ 0-0 ~'~ J~ -WN- z

M IJ M <?4= )_ -
a ~ MwIzc=

*, g W .-o

I ad ~ ~ z z>.j ~J81



000000000000000000000000000

4 -J* N L-

Ci 40* v L

*am Z.* z '0
0 O* 4 OU -

0_4 CD* -J CU

41 * e_ z
I 41' wU4 -LCO CL

414 .1041 N UJ..Jzv P0

41x -ace* z af

cc 4__.n31 -Cn~

I 41-~. I-*4 .-- 00
*o~ zi-4

Z. 41 OW* Q0W

Q4-. C* <* N .U. -X-p
41zW QW * U41- .4 t z- 0 -

4140 + I-U-W 4 4n,

*4 cc' 41 omd -0Z 4j
*01- I.-)-*ZN J LIr WWo a.

I ~ ~ ~ ~ *C =1J 4*N J.Zf

xw.. 41f uwJLJ
I~~-m o w w(.I-~..4

*4'- * .4
I 41.13 4)0041 .
I *0. .e4
IU 1- 0.o

I 41W 0.4 c..JO82



* * wO m-. >1
*~ *Q=) ~I LU OV.~)

* 41 L ZQ 1-XZc .4 1.7 M 3ZO=0 .&L
(,J. 0.4. LJ-xUi 0 ZJZO w c

a Cf 0x WO L LU I- -J<M<4~Z
* ** ZOO. OWU LUJZO I* 0 _j .J.JfA 4 0-

% *~4 4Lu0 LU -J< .0 -9= < -6 Oc (n
at~ * X(e.c00 ..JZ.. <1- :R> 6-3 :3-

*o T-OC :00. Z04 Zvt UJJO L Z(400 x

* 1 0> -C 0Z -N UJW..JU
QI LU LjU Mcc -0 CLW

"A Cox X 0 -Muio
*04 ZUI-- ZQ <3cZW -Wu c1- LU .- 0 ) 0

I 41 * - 4c crwi- 4< a il .. JOZLW...jW--
I W I-U) -1 UCW ZO =0 m u w -JQ 0

act *i -u -0. U. 1-- I-I- WL Z -

* L*LU d 0- _.jI oWi ULU. i a- VI (fld
W * .- = 0 LU CL4 (AM At0 m--AfL~-

Ia I- >4*-O MUILI (D JI
* w.4 44 *-Z CiO "(-CfL.I-.

I 0 * i LU 4gui Z 0WLU fl)Q OWU
I 1-1 Z>I- 41 oz Z f ZO- Wb-0LwwC zx

41 Z1 4- a0- -... 4 <OQW </(~ I--
*U W* .JVA Q qo .. Jz MJJ 0 a-

x 4 LU41z CV Z) Z Z- w (oJ _j ft >.44 X f
41 *34 Oce I~ wo ZI.- w 4 ly - wx L

-91 * zoo-- Y- Ma ui -q LU I Z I-c >- 4
* Z* .. ZLu 0 I-(x X>- -z 0 V 4 LCun-o C

-M444 4 o I- u WOW(DO 3c adU ") <OZ- u>

41 Z* ~ ~ cr -I- C~ -4.. 0 I-L -U-z4 * ZCz0~ ( . OZ~4.JU~
41 * LJ O. -4 % owjo 0iL6 Z /) X 1-0 e< '-.

1441 ~0 z 00 3c LUZ -Zo : .* LUj(%
41 * 014c LUJ ZL. zm in" wz X 0(0.jo -(A
< 4 >00I- d .4 0D4xtn 0 I-- d<ZWZ-o -4

O1 4 -. 00 I (A XLJ -JWl (x (D I-x 4 ZO. LU. ow
=t m1 QU* <J *0 0W . IX *~ OZl -

404 . LW Q= LU W LU x 0mowI 0<1-O-j Z-
I 41.4 Cf I - u Z( c~c = o O N w U X= -(.~~. WLL

41 41 ZO AW QA Ln .j tLn WU LUC 4 Y
V) Cf. <0 4LU X X MO '.-UJ I-Cr LU U..> I < 4 LoO OW

I 1 LU 41 WI- aI W J- =fl LnOW c 40'a-0 a* (I-WU
I 1 Z4 (i)-: - 9 (AM 3. :- C)-0 J -I

41 -)x <1) wL 4LU - mw mu WA V) zI I-<W= 4 I-LU
* 41 (j1Z .. LL CL Qiz .0 zc.j 4% LU -9:U M fL.u (/)

I 4 - 41 4XL X I-C ZDUJ- -r CC J _LL z I- Wuot.JW QCZ
* I-41- LU QIU LL i W-.LUD4 0.l C LI -U. QI Z..JVflIl- -A

cc * 4Z MA 1. 3 - 0 (A -I- xZ L" x w ( LU w UJWULM IL
LL 1 11 0 (A0 w -Z o4x0Q oL- 4 V) 41 -) O<UIJ z

* I4 1 .JZ- LA. Z 4 I-X W I-- U. X X: XW(Dc OCLU UW
oc I 1 * -h-s 0 C Qc cW0)( I-6.4 LLJ Ij m~ zwm0x
41 4m i Ml--O ~- ZO-JW ZZI- 1-Ln. s-W.(D.W I.-m

I- 1 1- wUC'-' -4 0. Z0 <ZOZ < -:) Wu CA * S

= I 1 4U(0- I- LL. W"U<I WUJ5 V) le4 N (n *.t

at * 0. (.D LI<

M1 V) ~ ( LU LU

I 83



LAA-1n% %~o~~ O~ -% 0001%100lNoo00-- 001 000000%%1

ccoccoccooocooc ooca o eoooco ocoaCCG oooco QQ ooculomm o

f - -j z *

LU C9 4*
zf~ Z o1- (nZ co

(a QU -0U X 0 4 q# ~ 4
cc CC (1 cz I- a ' 0-44.1(

(36 w L" CL Z 0MLz4

.. J 0 3 N" <.z 5
w ao cU LU I- =- Q 1 w 41

I LUZ 4U CL- )l- x Q a."404 c

LL >- = 0 C6 x-- 0 41 c

490 * .ft" 0 0 - C) OX (n 0U.
N-Z I0 U ot "Zs z 1

13-0 Z0Q Z- OLD Y. cc1 -
Z- <z Z x LJ =0 At ~

I. Q> WU. UL W- 1- Cz .J4
LWAG L"K z. 1 -cc z I

zW _jq 01 -U LL t 4- OLJ W.0 co)
MIA Ztj LL - 0 C 1 Q s 444 -1X

N1LmV w w w L LU CL= ".5 u-Z
b-U fL1- a" W- ft UO~ wA L41 _0.

0-1 Z x C4 W)o iU- L~uj crc (n
U. atL x 4 Li X W. % b-b- ~LU D

"U ULlUL 0 1-Z -4* -0 Z 5
Co LW V ZC WM) - - LL . WUJ Ax4 41 4

MI m <.J LU -. 1-uJ W1 -. Jlcz1*
u In X @XWI WL.J U o. XU =V* O.. cr.4

>I- Mu -- XU =MC M ~ M 41 0 M
Ia Q .N 0U Q LU <0 L* 0'-4 - -l-0..Wc-

IJCU >>0C QIZCClA 46 U UU.-L W 66IZX Q i- r am
u - 'flWD LU.1 z 4c .. V) - Z LUL) LU V)CL%3 41w b"XLL )(-$ U-o 41

-4 wJ LU 0.-L- -4 *C a -0 - .J D. - 1 I 1
x ) V ft -j Z(J- Jft -J 0Q1K 4 * 0ULL 41 '4 LJ%4

*).- I- * 1a I~ .. J 4z0L 0- U C ~1 - xb- -is-*
* Q 4-) 9W *X Q cc)( Q k-QW ,uUI Azw 1 4v 1-*

I U JZ U 0M- 1 1 -C -~- 14

I - .J~ .J ... s .1...JJ 00.W 4 wU. 41 ) r.
LU yy) 0i 0-J C'-~- 0 Z4~LJL~-~.41 ~ ~ Z4

* I * 4~ 4/11-4 I-Z4 1-~4 1- LU 4 ''.U 4 - K .h



0 !0 Wj

C4 IAOl -JO

I- Lt- LU
Cc I- 1. 0<0
4 LU It-JJ l

Li) UW->-*fl4Z)- -

0)P 0Z3tVfl
14 LU -c

I~~,d~ WuLW-LJU cc.- ~ 5
In m 4-u ui-Zi Z I-L

Ift 0U U. -A'- ..J cc
* cc c Z ''cJ w 1.-

LU .zZ V~0~uJjw -SUJ 0 C
cc- -0 lU.4z =LLOX 0

ZacoW- ocz a= LU z
I Q04fl-cQ4)(Q0 >

Io * - V) 0WZ-4 Z I

Iz z z * f* u4*

414 Y. * ftcn * * I
In *--tc - -* kO* N.--. * a..aa.a. a

-W C1 fl 1- Li* Li L -* -- -0 * ccwou cuMDO

I4* ftZ aZ Zm -4* 04 -t* * O.41.JJJJJ---

I * .- 4~W U *40N* *

I-* -0 0004 ja.* -ILC-O- J*coocc-oo.4 *

- I * 0*C* *
I .4 41 ** 41

I * 1 ** * g
I- ** * * *

I 41 * 85



Uu

~W~(MWWWuj

4 9 ~86



No411 0Pp

OOOOj OOOOOOOOOOOOOrOOOO

U.O O O O NN ~ % N n
OOQO~oOOOOOOOOOOOOOOO~oOo~oOOO)

414141141411*414
V) M* (

CJJ L* -*

at O Lu0j Li

* I- cc Li

4a L ( 4c 09 LiJ Z )-

* 1 41eol NWU- -I Z-

w *((DM LL WI-C fl >I- u-

Q 41 a-NN 0 MLL <_W
41 41 LUOOCD 4 LWZo- WOW

4W LL) :)AM WOC0- CD.-

41 4 4 ~ U W 0~ L6 I

z _ .. wm =a1

zu -4 Cc. -~ NU_

.2b N rm+-X O *
ad L 4j -W Z * -q<u (30 a a a 0..q*

:4~ I 40 1

4 LU 41-Si 00. PLiLI UWO C.a
41 Z Z Liti(Al-WAI-C >Z'- >>> MZAlU-Z Z

41 - 1L0U LI0.Z r.J. >0 W L

411--87



APPENDIX I: SCME IBM INSTALLATION TOOLS

FILE TAPE-2'MVS JCL

//HUNOLEYL JOB (316100O2O)9'Ro HUNDLEY SMC 24361,CLASS-D
//XX PROC
// EXEC PGtMu!EBGENER
//SYSPRINT DO fUMMY
f/SYSIN DO DUMMY
//SYSUTl n~r) UNIT=3400-49VOLSFRGIFTS2,

If DSPu(OLflPASS),LABFL=(&FN RIP,ITN),
DCB=(RECF-M=FB,LRECL=8O,BL 4IlZE= 6OOOEFN=2,OPTCOZOI

//SYSUT2 DO UNTT=335O,VOL=SFRMVSOO4
IID!SD=(NEWKEEP),SPACE=(CYL,(1,I) 3,
II CCB=(PECFM=FBLREL=80,BLKSIZE=640019
1/ SN=S3161.&FNA4E

,IPcNO
1FNEC XX,FNu1,FNAMEP-LEl
/1EXEC XXFN-2,FAMEI:ILEZ

ff EXEC XX,FN-3,F-NAME=FTLE3
1/EXFC XX,FN=4,FNAME=FlLE4
//EXEC XX,FN=5,FNAtdEwlFTLE5
/1EXFC XX,FN=6,FNAME=FILF6
,EXEC XXFN=T,FNAME=FILE7
II XFC XX,FNI8,FNAt'E=F!LF8
/~EXPC XX,FN=9,FNAME-FTLE9
1EXEC XX,FN-.IO,FNAMS-FILI:1Of' EXEC XX,FN-11,FNAME=FTLEI
IIEXEC XXvFN=12,FNAME=FTLF12
ii XFC XX,FN=13,FNAMF=r-TLr-13
/.EXEC XX,FN-14,FNAME-r-LC-14
1/EXEC XX,FN-15,FNAME=FILE15
IF XF(r XX,FNmL6,FNAME=rFTLF16
IEXEC XX,FN=.7,FNAME=FILE17
IlEXEC XX,FN=18,FNAmE=r-L0:18
IIEXEC XXFN=J.9,FNAME=FTLF19
//EXFC XX,FN=20,FN AME-FTLF2O
1EXEC XXFN=21,FNAM=FL121

fl EXEC XXpFN=2?,rFNAM =rcILE22
1EXFC XXFN=23,FNAMF=FILF23
IfEXEC XX,FN=24,FNAME=F-ILE24
1/EXFC XX,FN=25,FNAME=FTLr-25
1/EX!:C XX,FN=26,FNAME=F LE26

ff EXOC XX.FN=27,FN1AME=FILEF27
IIEXFC XX,FN=28,FNAME=FIL:28
/1EXEC XX,FN=29,FNAME=F1L 29
IfEXEC XX,FN=30,FNAME=FILS30
11EXEC XX,FN=31,F'AMEsFlLF31
IfEXEC XX FN:32,FNAM'E=r-LE32
IEXFC XXFN=33,FNAMF=OTLE33

f. /1EXEC XX,FN=34,FNAmF=FILF34
* f EXEC XX, FN=35, FNAMEr- 0:35

1/EXFC XX, FN-36, FNAME=FI L636
IIEXEC XX,FN=37,FNAME=FTLE37

88



F

FILE MVS2CMS EXEC

* MVSZCMS EXEC

*' THIS EXEC WILL CAUSE THE TRANSFER CF THE GIFTS SOURCE
*= CODE FROM MVS DISK MVSO04 TO THE USER'S CMS DISK SPACE.*

* PRICR TO USE OF THIS EXEC, LINK TO MVSO04 BY ISSUING:

,1* CP LINK VVS 36B 368 RR ,
, ACC 36BE *

FILEDEF INMOVE E DSN S3161 FILE1
FILEDEF CUTMOVE DISK GIFTS5 INF
MOVEFILE INMGVE OUTPCVE
FILEDEF INMOVE E DSI S3161 FILE2
FILEDEF OUTMOVE DISK AUTOL FORTRAN
MOVEFILE INMCVE CUTMCVE
COPY AUTOL FORTRAN A = PACKED = (PA
ERASE AUTOL FCRTRAN A
FILEDEF INMOVE E DSN S3161 FILE3
FILEDEF OUTMOVE DISK BULKF FORTRAN
MOVEFILE INMCVE OUTMCVE
COPY BLLKF FORTRAN A = PACKED = (PA
ERASE BULKF FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE4
FILEDEF OUTMOVE DISK BULKLB FCRTRAN
MOVEFILE INMCVE CUTMCVE
COPY BULKLB FCRTRAN A = PACKED = (PA
ERASE BULKLB FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE5
FILEDEF OUTMOVE DISK BULKM FOPTRAN
MOVEFILE INMCVE OUTMGVE
COPY BULKM FORTRAN A = PACKED = (PA
ERASE BULKM FCPTRAN A
FILEDEF INMOVE E DSN S3161 FILE6
FILEDEF OUTMCVE DISK BULKS FORTRAN
MOVEFIL _ INMCVE OUTPCVE
COPY BULKS FORTRAN A = PACKED = (PA
ERASE EULKS FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE7
FILEDEF OUTMOVE DISK DECGM FORTRAN
MOVEFILE INMCVE CUTMCVE
COPY DECOM FORTRAN A = PACKED = (PA
ERASE CECOM FCRTRAN A
FILEDEF INMCVE E OSN S3161 FILE8
FILEDEF OUTMOVE DISK DEFCS FCR TRAN
MOVEFILE INMCVE OUTMCVE
COPY DEFCS FOR tAN A = PACKED = (PA
ERASE CEFCS FORTRAN A
FILEDEF INMOVE E OSN S3161 FILE9
FILEDEF OUTMOVE DISK DEFL FCRTRAN
MOVEFILE INMCVE QUTMCVE
COPY DEFL FORTRAN A = PACKED = (PA
ERASE CEFL FORTRAN A

89



FILEDEF INMOVE E DSN S3161 FILE1O
FILEDEF OUTMOVE DISK EDITLB FCRTRAN
MOVEFILE INMCVE CUTPCVE
COPY EDITLB FORTRAN A a PACKED a (PA
ERASE EDITLB FORTRAN A
FILEDEF INMOVE E DSN S3161 FILEII
FILEDEF OUTMCVE DISK EDITM FORTRAN
MOVEFILE INMOVE OUTMOVE
COPY EDITM FORTRAN A = PACKED a (PA
ERASE EDITM FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE12
FILED F OUTMOVE DISK EDITS FCRTRAN
MOVEFILE INMCVE OUTMOVE
COPY EDITS FORTRAN A a PACKED a (PA
ERASE EDITS FORTRAN A
FILEDEF INMOVE E DSN 53161 FILE13
FILEDEF OUTMCVE DISK ESTIM FCRTRAN
MOVEFILE INMCVE OLTMOVE
COPY ESTIM FORTRAN A a PACKED = (PA
ERASE ESTIM FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE14
FILEDEF OUTNCVE DISK LOADS FORTRAN
MOVEFILE INMOVE OUTPCVE
COPY LCACS FORTRAN A = PACKED = (PA
ERASE LOADS FCRTRAN A
FILEDEF INMOVE E DSN S3161 FILE15
FILEDEF OUTMOVE DISK LOCAL FORTRAN
NOVEFILE INMOVE CLTMCVE
COPY LCCAL FORTRAN A = PACKED = (PA
ERASE LOCAL FCRTRAN A
FILEDEF INMOVE E DSN S3161 FILE16
FILEDEF OUTMOVE DISK OPTIM FORTRAN
MOVEFILE INMOVE CUTPCVE
COPY CPTIM FORTRAN A = PACKED = (PA
ERASE OPTIM FCRTRAN A
FILEDEF INMOVE E DSN S3161 FILE17
FILEDEF OUTMOVE DISK PRINT FORTRAN
MOVEFILE INMCVE CUTPCVE
COPY PRINT FORTRAN A = PACKED = (PA
ERASE PRINT FORTRAN A
FILEDEF INMOVE E OSN S3161 FILE18
FILEDEF OUTMOVE DISK RECCS FORTRAN
MOVEFILE INMCVE OUTMOVE
COPY REDCS FORTRAN A = PACKED = (PA
ERASE REOCS FCRTRAN A
FILEDEF INMCVE E DSN S3161 FILE19
FILEDEF OUTMOVE DISK RESIDU FCRTRAN
MOVEFILE INMCVE CUTMCVE
COPY RESIDU FORTRAN A a PACKED = (PA
ERASE RESIDU FORTRAN A
FILEDEF INMOVE E OSN S3161 FILE20
FILEDEF OUTMOVE DISK RESULT FORTRAN
MOVEFILE INMOVE OUTMCVE
COPY RESULT FORTRAN A a PACKED = (PA
ERASE RESULT FORTRAN A
FILEDEF INMOVE E DSN 53161 FILE21
FILEDEF OUTMCVE DISK SAVEK FCRTRAN
MOVEFILE INMGVE OCTMOVE
COPY SAVEK FORTRAN A = PACKED = (PA
F RASE SAVVKMFCRTRAN A
ILEDE NMOVE E DSN S3161 FILE22

FILEDEF OUTMCVE DISK STIFF FORTRAN
?OVEFILE INMOVE OUTICVE
COPY STIFF FORTRAN A = PACKED = (PA
ERASE STIFF FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE23
FILEDEF OUTMOVE DISK STRESS FGRTRAN

90



MOVEFILE INMCVE OLTMGVE
COPY STRESS FORTRAN A - PACKED =(PA
ERASE STRESS FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE24
FILEDEF OUTMOVE DISK SUBS FORTRAN
MOVEFILE INMCVE GUT1'CVE
COPY SUBS FORTRAN A - PACKED a (PA
ERASE SUBS FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE25
FILEDEF OUTMCVE DISK TRAN1 FORTRAN
MOVEFILE INMCVE OLT?'CVE
COPY TRAN1 FORTRAN A a PACKED = (PA
ERASE TRAMi FCRTRAN A
FILEDEF INMOVE E DSN S3161 FILE26
FILEDEF OUTMOVE DISK TPAN2 FORTRAN
MOVEFILE INMCVE OUTI'CVE
COPY TRAN2 FORTRAN A - PACKED - (PA
ERASE TRANZ FORTRAN A
FILEDEF INMOVE E DSN S3161J FILE27
FILEDEF OUTMOVE DISK TRANS FCRTRAN
MOVEFILE INMCVE CUTMCV E
COPY TRANS FORTRAN A - PACKED - (PA
ERASE TRANS FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE28
FILEDEF OUTMOVE DISK TESTCS FCRTRAN
MOVEFILE INMCVE OUTMOVE
COPY TESTCS FORTRAN A a PACKED = (PA
ERASE TESTCS FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE29
FILEDEF OUTMOVE DISK TESTIC FCRTRAN
MOVEFILE INMOVE OUTI'CVE
COPY TESTIG FORTRAN A = PACKED = (PA
ERASE TESTIG FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE30
FILEDEF OUTMOVE DISK TEST FORTRAN
MOVEF 112 INMCVE OUTI4CVE
COPY TEST FORTRAN A = PACKED - (PA
ERASE TEST FORTRAN A
FILEDEF INMOVE E DSN S3161 FILE31
FILEDEF OUTMCVE DISK TEST2 FORTRAN
MOVEF 112 INMOVE OUTMCVE
COPY TEST2 FORTRAN A = PACKED = (PA
ERASE TEST2 FORTRAN A
FILEDEF INMOVE E OSN S3161 FILE32
FILEDEF OUTMOVE DISK TSTPLT FCRTRAN
MOVEFILE INMOVE CUTPCVE
COPY TSTPLT FCRTRAN A = PACKED = (PA
ERASE TSTPLT FORTRAN A
FILEDEF INMOVE E DSN S316) FILE33
FILEDEF OUTMOVE DISK LIBR. FORTRAN
MOVEFILE INMCVE CLTI4CVE
FILEDEF INMOVE E DSN S3161 FILE34
FILEDEF OUTMOVE DISK LIBR2 FORTRAN
MOVEFILE INMCVE CUTI'CVE

4FILEDEF INMOVE E DSN S3161 FILE35
FILEDEF OUTMOVE DISK LISR3 FORTRAN
MOVEFILE INMCVE OUTMCVE
FILEDEF INI4OVE E DSN S3161 FILE36
FILEDEF OUT?4OVE DISK LIBR4 FCRTRAN
MOVEFILE INMCVE OUTMCVE
FILEDEF INMOVE E OSN S3161 FILE37
FILEDEF OUTMOVE DISK LIBR5 FCRTRAN
MOVEFILE INMOVE OUTMCVE
REL E (DET
FLIST

91



APPENDIX J:

GIFTS USER INSTRUCTIONS FOR THE IBM (CP/CMS) VERSION

TERMINAL USAGE

GIFTS may be executed on any terminal, but if the terminal

is not a Tektronix 4000 series graphics terminal, plot com-

mands must not be used as they will be meaningless and may

cause termination of execution. If using a non-graphics

terminal, the user will have only the alphanumeric output

from GIFTS available.

GIFTS ANALYSIS PROCEDURES

The analysis procedures described in GIFTS User's Refer-

ence Manual are used, but the module IBMJDB must first be

executed to create the data base for the analysis. Follow-

ing the execution of IBMUDB, the user will have 48 (small)

files onthe 'A' disk. Upon the completion of an analysis,

it is the responsibility of the user to erase these files,

as needed, from his disk space.

STORAGE REQUIREMENTS

To ensure sufficient core for an analysis, prior to

executing a module, issue the command:

CP DEFINE STORAGE 1M

92

'Lft



which will place you in the CP operating environment. To

return to the CMS environment, issue the command:

CP IPL CMS.

LINKING TO THE GIFTS SYSTEM'S DISK SPACE

In order to perform a GIFTS analysis, the GIFTS system's

disk space must be linked to and accessed as the user's 'C'

disk. This can be accomplished by issuing the command (user

input in lower case, computer output in upper case):

cp link 3 161p 191 199 rr
ENTER READ PASSWORD:
gifts
R; T=0.01/0.01 20:25:17
access 199 c
C (199) R/O
R; T=0.01/0.02 20:25:25

Once linked and accessed as the user's 'C' disk, the GIFTS

system is ready for use.

ENTERING A BLANK LINE IN GIFTS

At times, during execution of the GIFTS modules, it will

be necessary to issue a blank line, or GIFTS may even prompt

the user to enter a carriage return. It is of the utmost

importance in both cases, that a space, plus a carriage

return be entered. If a carriage return alone is entered,

program module execution will be terminated.

93



EXECUTING A GIFTS PROGRAM MODULE

To execute a GIFTS program module, issue the command:

RUN XXXXXX

where XXXXXX is the name of the desired module. This will

cause the desired module and necessary libraries to be loaded

and executed. The user is reminded that module IBMUDB must be

executed at the start of each analysis.

9

94



LIST OF REFERENCES

1. University of Arizona, GIFTS User's Reference Manual,
1981.

2. University of Arizona, GIFTS System's Manual, 1979.

3. University of Arizona, GIFTS Installation Manual, 1981.

4. University of Arizona, GIFTS Theoretical Manual, 1979.

S. IBM Corporation, IBM Virtual Machine/System Product:
CMS Command and Macro Reference, 5C19- _Z09-0, ist.
Ed., 1980.

6. IBM Corporation, IBM Virtual Machine/System Product:
CP Command Reference for- General Users, C19-=17-0,
ist. Ed., 1980.

7. IBM Corporation, IBM Virtual Machine/System PicJict:
CMS User's Guide, SC19-6210-0, Ist. Ed., 1980.

8. IBM Corporation, IBM System/370 Principles of Operation,
GA22-7000-6, 7th. Ed., 1980.

9. IBM Corporation, IBM System/360 and System/370 FORTRAN
IV Language, GC-28-6515-10, lth. Ed., 1974.

10. IBM Corporation, IBM System/370 Operating System FORTRAN
IV (G and H) Programers Guide, GCZS-b817-4, 5th. Ed.,
1973.

11. IBM Corporation, IBM System Reference Library - OS
Utilities, GC28-6585-15, 16th. Ed., 1973.

12. Newman, W. M. and Spronll, R. F., Principles of Inter-
active Computer Grahics, 2nd. Ed., McGraw-Hill, 1979.

13. Weik, M. H., Standard Dictionary of Computers and
Information Processing, Ist. Ed., Hayden Books, 1969.

14. Zienkiewicz, 0. C., The Finite Element Method, 3rd.
Ed., McGraw-Hill, 1979.

15. IBM Corporation, IBM System/370 Reference Summary,
GX20-1850-3, 4th. Ed., 197b.

95



AD-AS16 7" NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 9/2
A VERSION OF TIE SAAPHIrCS-ORIENTED INTERACTIVE FINITE ELEIENT T-ETCtU)
NO B R HUNDLEY

UNCLASSIFIED WL

I -E ,



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 69Mx
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940

4. Professor Gilles Cantin, Code 69Ci S
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940

5. Supervisor of Shipbuilding, 2
Conversion and Repair, USN
Attn: LT Ronnie Hundley, USN
Long Beach Naval Shipyard
Long Beach, California 90822

6. Professor Hussein A. Kamel 2
University of Arizona
College of Engineering
Aerospace and Mechanical Engineering Dept.
Interactive Graphics Engineering Laboratory
AME Building, Room 2101
Tucson, Arizona 85721

1(

96

LA


